
1.1  INTRODUCTION

All of us have the experience of seeing a spark or hearing a crackle when
we take off our synthetic clothes or sweater, particularly in dry weather.
This is almost inevitable with ladies garments like a polyester saree. Have
you ever tried to find any explanation for this phenomenon? Another
common example of electric discharge is the lightning that we see in the
sky during thunderstorms. We also experience a sensation of an electric
shock either while opening the door of a car or holding the iron bar of a
bus after sliding from our seat. The reason for these experiences is
discharge of electric charges through our body, which were accumulated
due to rubbing of insulating surfaces. You might have also heard that
this is due to generation of static electricity. This is precisely the topic we
are going to discuss in this and the next chapter. Static means anything
that does not move or change with time. Electrostatics deals with the
study of forces, fields and potentials arising from static charges.

1.2  ELECTRIC CHARGE

Historically the credit of discovery of the fact that amber rubbed with
wool or silk cloth attracts light objects goes to Thales of Miletus, Greece,
around 600 BC. The name electricity is coined from the Greek word
elektron meaning amber. Many such pairs of materials were known which
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on rubbing could attract light objects
like straw, pith balls and bits of papers.
You can perform the following activity
at home to experience such an effect.
Cut out long thin strips of white paper
and lightly iron them. Take them near a
TV screen or computer monitor. You will
see that the strips get attracted to the
screen. In fact they remain stuck to the
screen for a while.

It was observed that if two glass rods
rubbed with wool or silk cloth are
brought close to each other, they repel
each other [Fig. 1.1(a)]. The two strands
of wool or two pieces of silk cloth, with
which the rods were rubbed, also repel
each other. However, the glass rod and

wool attracted each other. Similarly, two plastic rods rubbed with cat’s
fur repelled each other [Fig. 1.1(b)] but attracted the fur. On the other
hand, the plastic rod attracts the glass rod [Fig. 1.1(c)] and repel the silk
or wool with which the glass rod is rubbed. The glass rod repels the fur.

If a plastic rod rubbed with fur is made to touch two small pith balls
(now-a-days we can use polystyrene balls) suspended by silk or nylon
thread, then the balls repel each other [Fig. 1.1(d)] and are also repelled
by the rod. A similar effect is found if the pith balls are touched with a
glass rod rubbed with silk [Fig. 1.1(e)]. A dramatic observation is that a
pith ball touched with glass rod attracts another pith ball touched with
plastic rod [Fig. 1.1(f )].

These seemingly simple facts were established from years of efforts
and careful experiments and their analyses. It was concluded, after many
careful studies by different scientists, that there were only two kinds of
an entity which is called the electric charge. We say that the bodies like
glass or plastic rods, silk, fur and pith balls are electrified. They acquire
an electric charge on rubbing. The experiments on pith balls suggested
that there are two kinds of electrification and we find  that (i) like charges
repel and (ii) unlike charges attract each other. The experiments also
demonstrated that the charges are transferred from the rods to the pith
balls on  contact. It is said that the pith balls are electrified or are charged
by  contact. The property which differentiates the two kinds of charges is
called the polarity of charge.

When a glass rod is rubbed with silk, the rod acquires one kind of
charge and the silk acquires the second kind of charge. This is true for
any pair of objects that are rubbed to be electrified. Now if the electrified
glass rod is brought in contact with silk, with which it was rubbed, they
no longer attract each other. They also do not attract or repel other light
objects as they did on being electrified.

Thus, the charges acquired after rubbing are lost when the charged
bodies are brought in contact. What can you conclude from these
observations? It just tells us that unlike charges acquired by the objects

FIGURE 1.1 Rods and pith balls: like charges repel and
unlike charges attract each other.
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neutralise or nullify each other’s effect. Therefore the charges were named
as positive and negative by the American scientist Benjamin Franklin.
We know that when we add a positive number to a negative number of
the same magnitude, the sum is zero. This might have been the
philosophy in naming the charges as positive and negative. By convention,
the charge on glass rod or cat’s fur is called positive and that on plastic
rod or silk is termed negative. If an object possesses an electric charge, it
is said to be electrified or charged. When it has no charge it is said to be
neutral.

UNIFICATION OF ELECTRICITY AND MAGNETISM

In olden days, electricity and magnetism were treated as separate subjects. Electricity
dealt with charges on glass rods, cat’s fur, batteries, lightning, etc., while magnetism
described interactions of magnets, iron filings, compass needles, etc. In 1820 Danish
scientist Oersted found that a compass needle is deflected by passing an electric current
through a wire placed near the needle. Ampere and Faraday supported this observation
by saying that electric charges in motion produce magnetic fields and moving magnets
generate electricity. The unification was achieved when the Scottish physicist Maxwell
and the Dutch physicist Lorentz put forward a theory where they showed the
interdependence of these two subjects. This field is called electromagnetism. Most of the
phenomena occurring around us can be described under electromagnetism. Virtually
every force that we can think of like friction, chemical force between atoms holding the
matter together, and even the forces describing processes occurring in cells of living
organisms, have its origin in electromagnetic force. Electromagnetic force is one of the
fundamental forces of nature.

Maxwell put forth four equations that play the same role in classical electromagnetism
as Newton’s equations of motion and gravitation law play in mechanics. He also argued
that light is electromagnetic in nature and its speed can be found by making purely
electric and magnetic measurements. He claimed that the science of optics is intimately
related to that of electricity and magnetism.

The science of electricity and magnetism is the foundation for the modern technological
civilisation. Electric power, telecommunication, radio and television, and a wide variety
of the practical appliances used in daily life are based on the principles of this science.
Although charged particles in motion exert both electric and magnetic forces, in the
frame of reference where all the charges are at rest, the forces are purely electrical. You
know that gravitational force is a long-range force. Its effect is felt even when the distance
between the interacting particles is very large because the force decreases inversely as
the square of the distance between the interacting bodies. We will learn in this chapter
that electric force is also as pervasive and is in fact stronger than the gravitational force
by several orders of magnitude (refer to Chapter 1 of Class XI Physics Textbook).

A simple apparatus to detect charge on a body is the gold-leaf
electroscope [Fig. 1.2(a)]. It consists of a vertical metal rod housed in a
box, with two thin gold leaves attached to its bottom end. When a charged
object touches the metal knob at the top of the rod, charge flows on to
the leaves and they diverge. The degree of divergance is an indicator of
the amount of charge.
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Students can make a simple electroscope as

follows [Fig. 1.2(b)]: Take a thin aluminium curtain
rod with ball ends fitted for hanging the curtain. Cut
out a piece of length about 20 cm with the ball at
one end and flatten the cut end. Take a large bottle
that can hold this rod and a cork which will fit in the
opening of the bottle. Make a hole in the cork
sufficient to hold the curtain rod snugly. Slide the
rod through the hole in the cork with the cut end on
the lower side and ball end projecting above the cork.
Fold a small, thin aluminium foil (about 6 cm in
length) in the middle and attach it to the flattened
end of the rod by cellulose tape. This forms the leaves
of your electroscope. Fit the cork in the bottle with
about 5 cm of the ball end projecting above the cork.
A paper scale may be put inside the bottle in advance
to measure the separation of leaves. The separation
is a rough measure of the amount of charge on the
electroscope.

To understand how the electroscope works, use
the white paper strips we used for seeing the
attraction of charged bodies. Fold the strips into half
so that you make a mark of fold. Open the strip and
iron it lightly with the mountain fold up, as shown
in Fig. 1.3. Hold the strip by pinching it at the fold.
You would notice that the two halves move apart.

This shows that the strip has acquired charge on ironing. When you fold
it into half, both the halves have the same charge. Hence they repel each
other. The same effect is seen in the leaf electroscope. On charging the
curtain rod by touching the ball end with an electrified body, charge is
transferred to the curtain rod and the attached aluminium foil. Both the
halves of the foil get similar charge and therefore repel each other. The
divergence in the leaves depends on the amount of charge on them. Let
us first try to understand why material bodies acquire charge.

You know that all matter is made up of atoms and/or molecules.
Although normally the materials are electrically neutral,  they do contain
charges; but their charges are exactly balanced. Forces that hold the
molecules together, forces that hold atoms together in a solid, the adhesive
force of glue, forces associated with surface tension, all are basically
electrical in nature, arising from the forces between charged particles.
Thus the electric force is all pervasive and it encompasses almost each
and every field associated with our life. It is therefore  essential that we
learn more about such a force.

To electrify a neutral body, we need to add or remove one kind of
charge. When we say that a body is charged, we always refer to this
excess charge or deficit of charge. In solids,  some of the electrons, being
less tightly bound in the atom, are the charges which are transferred
from one body to the other.  A body can thus be charged positively by
losing some of its electrons. Similarly, a body can be charged negatively

FIGURE 1.2 Electroscopes: (a) The gold leaf
electroscope, (b) Schematics of a simple

electroscope.

FIGURE 1.3 Paper strip
experiment.
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by gaining electrons. When we rub a glass rod with silk, some of the
electrons from the rod are transferred to the silk cloth. Thus the rod gets
positively charged and the silk gets negatively charged. No new charge is
created in the process of rubbing. Also the number of electrons, that are
transferred, is a very small fraction of the total number of electrons in the
material body. Also only the less tightly bound electrons in a material
body can be transferred from it to another by rubbing. Therefore, when
a body is rubbed with another, the bodies get charged and that is why
we have to stick to certain pairs of materials to notice charging on rubbing
the bodies.

1.3  CONDUCTORS AND INSULATORS

A metal rod held in hand and rubbed with wool will not show any sign of
being charged. However, if a metal rod with a wooden or plastic handle is
rubbed without touching its metal part, it shows signs of charging.
Suppose we connect one end of a copper wire to a neutral pith ball and
the other end to a negatively charged plastic rod. We will find that the
pith ball acquires a negative charge. If a similar experiment is repeated
with a nylon thread or a rubber band, no transfer of charge will take
place from the plastic rod to the pith ball. Why does the transfer of charge
not take place from the rod to the ball?

Some substances readily allow passage of electricity through them,
others do not.  Those which allow electricity to pass through them easily
are called conductors. They have electric charges (electrons) that are
comparatively free to move inside the material. Metals, human and animal
bodies and earth are conductors. Most of the non-metals like glass,
porcelain, plastic, nylon, wood offer high resistance to the passage of
electricity through them. They are called insulators. Most  substances
fall into one of the two classes stated above*.

When some charge is transferred to a conductor, it readily gets
distributed over the entire surface of the conductor. In contrast, if some
charge is put on an insulator, it stays at the same place. You will learn
why this happens in the next chapter.

This property of the materials tells you why a nylon or plastic comb
gets electrified on combing dry hair or on rubbing, but a metal article
like spoon does not. The charges on metal leak through our body to the
ground as both are conductors of electricity.

  When we bring a charged body  in contact with the earth,  all the
excess charge on the body disappears by causing a momentary current
to pass to the ground through the connecting conductor (such as our
body). This process of sharing the charges with the earth is called
grounding or earthing. Earthing provides a safety measure for electrical
circuits and appliances. A thick metal plate is buried deep into the earth
and thick wires are drawn from this plate; these are  used in buildings
for the purpose of earthing near the mains supply.  The electric wiring in
our houses has three wires: live, neutral and earth. The first two carry

* There is a third category called semiconductors, which offer resistance to the
movement of charges which is intermediate between the conductors and
insulators.
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electric current from the power station and the third is earthed by
connecting it to the buried metal plate. Metallic bodies of the electric
appliances such as electric iron, refrigerator, TV are connected to the
earth wire. When any fault occurs or live wire touches the metallic body,
the charge flows to the earth without damaging the appliance and without
causing any injury to the humans; this  would have otherwise been
unavoidable since  the human body is a  conductor of electricity.

1.4  CHARGING BY INDUCTION

When we touch a pith ball with an electrified plastic rod, some of the
negative charges on the rod are transferred to the pith ball and it also
gets charged. Thus the pith ball is charged by contact. It is then repelled
by the plastic rod but is attracted by a glass rod which is oppositely
charged. However, why a electrified rod attracts light objects, is  a  question
we have still left unanswered. Let us try to understand what could be
happening by performing the following experiment.
(i) Bring two metal spheres, A and B, supported on insulating stands,

in contact as shown in Fig. 1.4(a).
(ii) Bring a positively charged rod near one of the spheres, say A, taking

care that it does not touch the sphere. The free electrons in the spheres
are attracted towards the rod. This leaves an excess of positive charge
on the rear surface of sphere B. Both kinds of charges are bound in
the metal spheres and cannot escape. They, therefore, reside on the
surfaces, as shown in Fig. 1.4(b). The left surface of sphere A, has an
excess of negative charge and the right surface of sphere B, has an
excess of positive charge. However, not all of the electrons in the spheres
have accumulated on the left surface of A. As the negative charge
starts building up at the left surface of A, other electrons are repelled
by these. In a short time, equilibrium is reached under the action of
force of attraction of the rod and the force of repulsion due to the
accumulated charges. Fig. 1.4(b) shows the equilibrium situation.
The process is called induction of charge and happens almost
instantly. The accumulated charges remain on the surface, as shown,
till the glass rod is held near the sphere. If the rod is removed, the
charges are not acted by any outside force and they redistribute to
their original neutral state.

(iii) Separate the spheres by a small distance while the glass rod is still
held near sphere A, as shown in Fig. 1.4(c). The two spheres are found
to be oppositely charged and attract each other.

(iv) Remove the rod. The charges on spheres rearrange themselves as
shown in Fig. 1.4(d). Now, separate the spheres quite apart. The
charges on them get uniformly distributed over them, as shown in
Fig. 1.4(e).
In this process, the metal spheres will each be equal and oppositely

charged. This is charging by induction. The positively charged glass rod
does not lose any of its charge, contrary to the process of charging by
contact.

When electrified rods are brought near light objects, a similar effect
takes place. The rods induce opposite charges on the near surfaces of
the objects and similar charges move to the farther side of the object.

FIGURE 1.4 Charging
by induction.
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[This happens even when the light object is not a conductor. The
mechanism for how this happens is explained later in Sections 1.10 and
2.10.] The centres of the two types of charges are slightly separated. We
know that opposite charges attract while similar charges repel. However,
the magnitude of force depends on the distance between the charges
and in this case the force of attraction overweighs the force of repulsion.
As a result the particles like bits of paper or pith balls, being light, are
pulled towards the rods.

Example 1.1 How can you charge a metal sphere positively without
touching it?

Solution Figure 1.5(a) shows an uncharged metallic sphere on an
insulating metal stand. Bring a negatively charged rod close to the
metallic sphere, as shown in Fig. 1.5(b). As the rod is brought close
to the sphere, the free electrons in the sphere move away due to
repulsion and start piling up at the farther end. The near end becomes
positively charged due to deficit of electrons. This process of charge
distribution stops when the net force on the free electrons inside the
metal is zero. Connect the sphere to the ground by a conducting
wire. The electrons will flow to the ground while the positive charges
at the near end will remain held there due to the attractive force of
the negative charges on the rod, as shown in Fig. 1.5(c). Disconnect
the sphere from the ground. The positive charge continues to be
held at the near end [Fig. 1.5(d)]. Remove the electrified rod. The
positive charge will spread uniformly over the sphere as shown in
Fig. 1.5(e).

FIGURE 1.5

In this experiment, the metal sphere gets charged by the process
of induction and the rod does not lose any of its charge.

Similar steps are involved in charging a metal sphere negatively
by induction, by bringing a positively charged rod near it. In this
case the electrons will flow from the ground to the sphere when the
sphere is connected to the ground with a wire. Can you explain why?
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1.5  BASIC PROPERTIES OF ELECTRIC CHARGE

We have seen that there are two types of charges, namely positive and
negative and their effects tend to cancel each other. Here,  we shall now
describe some other properties of the electric charge.

If the sizes of charged bodies are very small as compared to the
distances between them, we treat them as point charges. All the
charge content of the body is assumed to be concentrated at one point
in space.

1.5.1  Additivity of charges

We have not as yet given a quantitative definition of a charge; we shall
follow it up in the next section. We shall tentatively assume that this can
be done and proceed. If a system contains two point charges q1 and q2,
the total charge of the system is obtained simply by adding algebraically
q1 and q2 , i.e., charges add up like real numbers or they are scalars like
the mass of a body. If a system contains n charges q1, q2, q3, …, qn, then
the total charge of the system is q1 + q2 + q3 + … + qn .  Charge has
magnitude but no direction, similar to the mass. However, there is one
difference between mass and charge. Mass of a body is always positive
whereas a charge can be either positive or negative. Proper signs have to
be used while adding the charges in a system. For example, the
total charge of a system containing five charges +1, +2, –3, +4 and –5,
in some arbitrary unit, is (+1) + (+2) + (–3) + (+4) + (–5) = –1 in the
same unit.

1.5.2  Charge is conserved

We have already  hinted to the fact that when bodies are charged by
rubbing, there is transfer of electrons from one body to the other; no new
charges are either created or destroyed. A picture of particles of electric
charge enables us to understand the idea of conservation of charge. When
we rub two bodies, what one body gains in charge the other body loses.
Within an isolated system consisting of many charged bodies, due to
interactions among the bodies, charges may get redistributed but it is
found that the total charge of the isolated system is always conserved.
Conservation of charge has been established experimentally.

It is not possible to create or destroy net charge carried by any isolated
system although the charge carrying particles may be created or destroyed
in a process. Sometimes nature creates charged particles: a neutron turns
into a proton and an electron. The proton and electron thus created have
equal and opposite charges and the total charge is zero before and after
the creation.

1.5.3  Quantisation of charge
Experimentally it is established that all free charges are integral multiples
of a basic unit of charge denoted by e. Thus charge q on a body is always
given by

q = ne
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where n is any integer, positive or negative. This basic unit of charge is
the charge that an electron or proton carries. By convention, the charge
on an electron is taken to be negative; therefore charge on an electron is
written as –e and that on a proton as +e.

The fact that electric charge is always an integral multiple of e is termed
as quantisation of charge. There are a large number of situations in physics
where certain physical quantities are quantised. The quantisation of charge
was first suggested by the experimental laws of electrolysis discovered by
English experimentalist Faraday. It was experimentally demonstrated by
Millikan in 1912.

In the International System (SI) of Units, a unit of charge is called a
coulomb and is denoted by the symbol C. A coulomb is defined in terms
the unit of the electric current which you are going to learn in a
subsequent chapter. In terms of this definition, one coulomb is the charge
flowing through a wire in 1 s if the current is 1 A (ampere), (see Chapter 2
of Class XI, Physics Textbook , Part I). In this system, the value of the
basic unit of charge is

e = 1.602192 × 10–19 C

Thus, there are about 6 × 1018 electrons in a charge of  –1C. In
electrostatics, charges of this large magnitude are seldom encountered
and hence we use smaller units 1 μC (micro coulomb) = 10–6 C or 1 mC
(milli coulomb) = 10–3 C.

If the protons and electrons are the only basic charges in the universe,
all the observable charges have to be integral multiples of e. Thus, if a
body contains n1 electrons and n 2 protons, the total amount of charge
on the body is n 2 × e + n1 × (–e) = (n2 – n1) e. Since n1 and n2 are integers,
their difference is also an integer. Thus the charge on any body is always
an integral multiple of e and can be increased or decreased also in steps
of e.

The step size e is, however, very small because at the macroscopic
level, we deal with charges of a few μC. At this scale the fact that charge of
a body can increase or decrease in units of e is not visible. The grainy
nature of the charge is lost and it appears to be continuous.

This situation can be compared with the geometrical concepts of points
and lines. A dotted line viewed from a distance appears continuous to
us but is not continuous in reality. As many points very close to
each other normally give an impression of a continuous line, many
small charges taken together appear as a continuous charge
distribution.

At the macroscopic level, one deals with charges that are enormous
compared to the magnitude of charge e. Since e = 1.6 × 10–19 C, a charge
of magnitude, say 1 μC, contains something like 1013 times the electronic
charge. At this scale, the fact that charge can increase or decrease only in
units of e is not very different from saying that charge can take continuous
values. Thus, at the macroscopic level, the quantisation of charge has no
practical consequence and can be ignored. At the microscopic level, where
the charges involved are of the order of a few tens or hundreds of e, i.e.,
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they can be counted, they appear in discrete lumps and quantisation of
charge cannot be ignored. It is the scale involved that is very important.

Example 1.2 If 109 electrons move out of a body to another body
every second, how much time is required to get a total charge of 1 C
on the other body?

Solution In one second 109 electrons move out of the body. Therefore
the charge given out in one second is 1.6 × 10–19 × 109 C = 1.6 × 10–10 C.
The time required to accumulate a charge of 1 C can then be estimated
to be 1 C ÷ (1.6 × 10–10 C/s) = 6.25 × 109 s = 6.25 × 109 ÷ (365  × 24 ×
3600) years = 198 years. Thus to collect a charge of one coulomb,
from a body from which 109 electrons move out every second, we will
need approximately 200 years. One coulomb is, therefore, a very large
unit for many practical purposes.
It is, however, also important to know what is roughly the number of
electrons contained in a piece of one cubic centimetre of a material.
A cubic piece of copper of side 1 cm contains about 2.5 × 1024

electrons.

Example 1.3 How much positive and negative charge is there in a
cup of water?

Solution Let us assume that the mass of one cup of water is
250 g. The molecular mass of water is 18g. Thus, one mole
(= 6.02 × 1023 molecules) of water is 18 g. Therefore the number of
molecules in one cup of water is (250/18) × 6.02 × 1023.
Each molecule of water contains two hydrogen atoms and one oxygen
atom, i.e., 10 electrons and 10 protons. Hence the total positive and
total negative charge has the same magnitude. It is equal to
(250/18) × 6.02 × 1023 × 10 × 1.6 × 10–19 C = 1.34 × 107 C.

1.6  COULOMB’S LAW

Coulomb’s law is a quantitative statement about the force between two
point charges. When the linear size of charged bodies are much smaller
than the distance separating them, the size may be ignored and the
charged bodies are treated as point charges. Coulomb measured the
force between two point charges and found that it varied inversely as
the square of the distance between the charges and was directly
proportional to the product of the magnitude of the two charges and
acted along the line joining the two charges. Thus, if two point charges
q1, q2 are separated by a distance r in vacuum, the magnitude of the
force (F) between them is given by

21
2

q q
F k

r
= (1.1)

How did Coulomb arrive at this law from his experiments? Coulomb
used a torsion balance*  for measuring the force between two charged metallic

* A torsion balance is a sensitive device to measure force. It was also used later
by Cavendish to measure the very feeble gravitational force between two objects,
to verify Newton’s Law of Gravitation.
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spheres. When the separation between two spheres is much
larger than the radius of each sphere, the charged spheres
may be regarded as point charges. However, the charges
on the spheres were unknown, to begin with. How then
could he discover a relation like Eq. (1.1)? Coulomb
thought of the following simple way: Suppose the charge
on a metallic sphere is q. If the sphere is put in contact
with an identical uncharged sphere, the charge will spread
over the two spheres. By symmetry, the charge on each
sphere will be q/2*. Repeating this process, we can get
charges q/2, q/4, etc. Coulomb varied the distance for a
fixed pair of charges and measured the force for different
separations. He then varied the charges in pairs, keeping
the distance fixed for each pair. Comparing forces for
different pairs of charges at different distances, Coulomb
arrived at the relation, Eq. (1.1).

Coulomb’s law, a simple mathematical statement,
was initially experimentally arrived at  in the manner
described above. While the original experiments
established it at a macroscopic scale, it has also been
established down to subatomic level  (r ~ 10–10 m).

Coulomb discovered his law without knowing the
explicit magnitude of the charge. In fact, it is the other
way round: Coulomb’s law can now be employed to
furnish a definition for a unit of charge. In the relation,
Eq. (1.1), k is so far arbitrary. We can choose any positive
value of k. The choice of k determines the size of the unit
of charge. In SI units, the value of k is about 9 × 109.
The unit of charge that results from this choice is called
a coulomb which we defined earlier in Section 1.4.
Putting this value of k in Eq. (1.1), we see that for
q1 = q2 = 1 C, r = 1 m

F = 9 × 109 N
That is, 1 C is the charge that when placed at a

distance of 1 m from another charge of the same
magnitude in vacuum experiences an electrical force of
repulsion of magnitude 9 × 109 N. One coulomb is
evidently too big a unit to be used. In practice, in
electrostatics, one uses smaller units like 1 mC or 1 μC.

The constant k in Eq. (1.1) is usually put as
k = 1/4πε0 for later convenience, so that Coulomb’s law is written as

0

1 2
2

1
4

q q
F

rε
=

π (1.2)

ε0 is called the permittivity of free space . The value of ε0 in SI units is

0ε = 8.854 × 10–12 C2 N–1m–2

* Implicit in this is the assumption of additivity of charges and conservation:
two charges (q/2 each) add up to make a total charge q.

Charles Augustin de
Coulomb (1736 – 1806)
Coulomb, a French
physicist, began his career
as a military engineer in
the West Indies. In 1776, he
returned to Paris and
retired to a small estate to
do his scientific research.
He invented a torsion
balance to measure the
quantity of a force and used
it for determination of
forces of electric attraction
or repulsion between small
charged spheres. He thus
arrived in 1785 at the
inverse square law relation,
now known as Coulomb’s
law. The law had been
anticipated by Priestley and
also by Cavendish earlier,
though Cavendish never
published his results.
Coulomb also found the
inverse square law of force
between unlike and like
magnetic poles.
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Since force is a vector, it is better to write

Coulomb’s law in the vector notation. Let the
position vectors of charges q1 and q2 be r1 and r2
respectively [see Fig.1.6(a)]. We denote force on
q1 due to q2 by F12 and force on q2 due to q1 by
F21. The two point charges q1 and q2 have been
numbered 1 and 2 for convenience and the vector
leading from 1 to 2 is denoted by r21:

r21 = r2 – r1

In the same way, the vector leading from 2 to
1 is denoted by r12:

r12 = r1 – r2 = – r21

The magnitude of the vectors r21 and r12 is
denoted by r21 and r12, respectively (r12 = r21). The
direction of a vector is specified by a unit vector
along the vector. To denote the direction from 1
to 2 (or from 2 to 1), we define the unit vectors:

21
21

21

ˆ
r

=
r

r , 
12

12 21 12
12

ˆ ˆ ˆ,
r

= =
r

r r r

Coulomb’s force law between two point charges q1 and q2 located at
r1 and r2 is then expressed as

1 2
21 212

21

1
ˆ

4 o

q q

rε
=

π
F r (1.3)

Some remarks on Eq. (1.3) are relevant:

• Equation (1.3) is valid for any sign of q1 and q2 whether positive or
negative. If q1 and q2 are of the same sign (either both positive or both
negative), F21 is along r̂ 21, which denotes repulsion, as it should be for
like charges. If q1 and q2 are of opposite signs, F21 is along – r̂ 21(= r̂ 12),
which denotes attraction, as expected for unlike charges. Thus, we do
not have to write separate equations for the cases of like and unlike
charges. Equation (1.3) takes care of both cases correctly [Fig. 1.6(b)].

• The force F12  on charge q1 due to charge q2, is obtained from Eq. (1.3),
by simply interchanging 1 and 2, i.e.,

1 2
12 12 212

0 12

1
ˆ

4
q q

rε
= = −

π
F r F

Thus, Coulomb’s law agrees with the Newton’s third law.

• Coulomb’s law [Eq. (1.3)] gives the force between two charges q1 and
q2 in vacuum. If the charges are placed in matter or the intervening
space has matter, the situation gets complicated due to the presence
of charged constituents of matter. We shall consider electrostatics in
matter in the next chapter.

FIGURE 1.6 (a) Geometry and
(b) Forces between charges.
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Example 1.4 Coulomb’s law for electrostatic force between two point
charges and Newton’s law for gravitational force between two
stationary point masses, both have inverse-square dependence on
the distance between the charges/masses. (a) Compare the strength
of these forces by determining the ratio of their magnitudes (i) for an
electron and a proton and (ii) for two protons. (b) Estimate the
accelerations of electron and proton due to the electrical force of their
mutual attraction when they are 1 Å (= 10-10 m) apart? (mp = 1.67 ×
10–27 kg, me = 9.11 × 10–31 kg)

Solution
(a) (i) The electric force between an electron and a proton at a distance

r apart is:
2

2
0

1
4e

e
F

rε
= −

π
where the negative sign indicates that the force is attractive. The
corresponding gravitational force (always attractive) is:

2
p e

G

m m
F G

r
= −

where mp and me are the masses of a proton and an electron
respectively.

2
39

0

2.4 10
4

e

G p e

F e
F Gm mε

= = ×
π

(ii) On similar lines, the ratio of the magnitudes of electric force
to the gravitational force between two protons at a distance r
apart is :

2

04
e

G p p

F e
F Gm mε

= =
π

 1.3 × 1036

However, it may be mentioned here that the signs of the two forces
are different. For two protons,  the gravitational force is attractive
in nature and the Coulomb force is repulsive . The actual values
of these forces between two protons inside a nucleus (distance
between two protons is ~ 10-15 m inside a nucleus) are Fe ~ 230 N
whereas FG ~ 1.9 × 10–34 N.
The (dimensionless) ratio of the two forces shows that electrical
forces are enormously stronger than the gravitational forces.

 (b) The electric force F exerted by a proton on an electron is same in
magnitude to the force exerted by an electron on a proton; however
the masses of an electron and a proton are different. Thus, the
magnitude of force is

|F| = 
2

2
0

1
4

e

rεπ  = 8.987 × 109 Nm2/C2 × (1.6 ×10–19C)2 / (10–10m)2

        = 2.3 × 10–8 N
Using Newton’s second law of motion, F = ma, the acceleration
that an electron will undergo is
a = 2.3×10–8 N / 9.11 ×10–31 kg = 2.5 × 1022 m/s2

Comparing this with the value of acceleration due to gravity, we
can conclude that the effect of gravitational field is negligible on
the motion of electron and it undergoes very large accelerations
under the action of Coulomb force due to a proton.
The value for acceleration of the proton is

2.3 × 10–8 N / 1.67 × 10–27 kg = 1.4 × 1019 m/s2
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Example 1.5 A charged metallic sphere A is suspended by a nylon
thread. Another charged metallic sphere B held by an insulating
handle is brought close to A such that the distance between their
centres is 10 cm, as shown in Fig. 1.7(a). The resulting repulsion of A
is noted (for example, by shining a beam of light and measuring the
deflection of its shadow on a screen). Spheres A and B are touched
by uncharged spheres C and D respectively, as shown in Fig. 1.7(b).
C and D are then removed and B is brought closer to A to a
distance of 5.0 cm between their centres, as shown in Fig. 1.7(c).
What is the expected repulsion of A on the basis of Coulomb’s law?
Spheres A and C and spheres B and D have identical sizes. Ignore
the sizes of A and B in comparison to the separation between their
centres.

FIGURE 1.7
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Solution Let the original charge on sphere A be q and that on B be
q′. At a distance r between their centres, the magnitude of the
electrostatic force on each is given by

2
0

1
4

qq
F

rε
′

=
π

neglecting the sizes of spheres A and B in comparison to r. When an
identical but uncharged sphere C touches A, the charges redistribute
on A and C and, by symmetry, each sphere carries a charge q/2.
Similarly, after D touches B, the redistributed charge on each is
q′/2. Now, if the separation between A and B is halved, the magnitude
of the electrostatic force on each is

2 2
0 0

1 ( /2)( /2) 1 ( )
4 4( /2)

q q qq
F F

r rε ε
′ ′

= = =′
π π

Thus the electrostatic force on A, due to B, remains unaltered.

1.7  FORCES BETWEEN MULTIPLE CHARGES

The mutual electric force between two charges is given
by Coulomb’s law. How to calculate the force on a
charge where there are not one but several charges
around? Consider a system of n stationary charges
q1, q2, q3, ..., qn in vacuum. What is the force on q1 due
to q2, q3, ..., qn? Coulomb’s law is not enough to answer
this question.  Recall that forces of mechanical origin
add according to the parallelogram law of addition. Is
the same true for forces of electrostatic origin?

Experimentally it is verified that force on any
charge due to a number of other charges is the vector
sum of all the forces on that charge due to the other
charges, taken one at a time. The individual forces
are unaffected due to the presence of other charges.
This is termed as the principle of superposition.

To better understand the concept, consider a
system of three charges q1, q2 and q3, as shown in
Fig. 1.8(a). The force on one charge, say q1, due to two
other charges q2, q3 can therefore be obtained by
performing a vector addition of the forces due to each
one of these charges. Thus, if the force on q1 due to q2
is denoted by F12, F12 is given by Eq. (1.3)  even though
other charges are present.

Thus, F12 
1 2

122
0 12

1
ˆ

4
q q

rε
=

π
r

In the same way, the force on q1 due to q3, denoted
by F13, is given by

1 3
13 132

0 13

1
ˆ

4

q q

rε
=

π
F r

FIGURE 1.8 A system of (a) three
charges (b) multiple charges.
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which again is the Coulomb force on q1 due to q3, even though other
charge q2 is present.

Thus the total force F1 on q1 due to the two charges q2 and q3 is
given as

1 31 2
1 12 13 12 132 2

0 012 13

1 1
ˆ ˆ

4 4

q qq q

r rε ε
= + = +

π π
F F F r r (1.4)

The above calculation of force can be generalised to a system of
charges more than three, as shown in Fig. 1.8(b).

The principle of superposition says that in a system of charges q1,
q2, ..., qn, the force on q1 due to q2 is the same as given by Coulomb’s law,
i.e., it is unaffected by the presence of the other charges q3, q4, ..., qn. The
total force F1 on the charge q1, due to all other charges, is then given by
the vector sum of the forces F12, F13, ...,  F1n:

i.e.,

1 3 11 2
1 12 13 1n 12 13 12 2 2

0 12 13 1

1 ˆ ˆ ˆ =   +  + ...+  ...
4

n
n

n

q q q qq q

r r rε
⎡ ⎤

= + + +⎢ ⎥π ⎣ ⎦
F F F F r r r

1
12

20 1

ˆ
4

n
i

i
i i

qq

rε =

=
π ∑ r (1.5)

The vector sum is obtained as usual by the parallelogram law of
addition of vectors. All of electrostatics is basically a consequence of
Coulomb’s law and the superposition principle.

Example 1.6 Consider three charges q1, q2, q3 each equal to q at the
vertices of an equilateral triangle of side l. What is the force on a
charge Q (with the same sign as q) placed at the centroid of the
triangle, as shown in Fig. 1.9?

FIGURE 1.9

Solution In the given equilateral triangle ABC of sides of length l, if
we draw a perpendicular AD to the side BC,
AD = AC cos 30º = ( 3 /2 ) l  and the distance AO of the centroid O
from A is (2/3) AD = (1/ 3 ) l. By symmatry AO = BO = CO.
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Thus,

Force F1 on Q due to charge q at A  = 2
0

3
4

Qq

lεπ
 along AO

Force F2 on Q due to charge q at B  = 2
0

3
4

Qq

lεπ  along BO

Force F3 on Q due to charge q at C  = 2
0

3
4

Qq

lεπ  along CO

The resultant of forces F2 and F3 is 2
0

3
4

Qq

lεπ  along OA, by the

parallelogram law. Therefore, the total force on Q = ( )2
0

3
ˆ ˆ

4
Qq

lε
−

π
r r

 = 0, where r̂ is the unit vector along OA.
It is clear also by symmetry that the three forces will sum to zero.
Suppose that the resultant force was non-zero but in some direction.
Consider what would happen if the system was rotated through  60º
about O.

Example 1.7 Consider the charges q, q, and –q placed at the vertices
of an equilateral triangle, as shown in Fig. 1.10. What is the force on
each charge?

FIGURE 1.10

Solution  The forces acting on charge q at A due to charges q at B
and –q at C are F12 along BA and F13 along AC respectively, as shown
in Fig. 1.10. By the parallelogram law, the total force F1 on the charge
q at A is given by

F1 = F 1̂r  where 1̂r  is a unit vector along BC.
The force of attraction or repulsion for each pair of charges has the

same magnitude 
2

2
04

q
F

lε
=

π

The total force F2 on charge q at B is thus F2 = F r̂
2, where r̂

2 is a
unit vector along AC.
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Similarly the total force on charge –q at C is F3  = 3  F n̂ , where n̂ is
the unit vector along the direction bisecting the ∠BCA.
It is interesting to see that the sum of the forces on the three charges
is zero, i.e.,

F1 + F2 + F3 = 0

The result is not at all surprising. It follows straight from the fact
that Coulomb’s law is consistent with Newton’s third law. The proof
is left to you as an exercise.

1.8  ELECTRIC FIELD

Let us consider a point charge Q placed in vacuum, at the origin O. If we
place another point charge q at a point P, where OP = r, then the charge Q
will exert a force on q as per Coulomb’s law. We may ask the question: If
charge q is removed, then what is left in the surrounding? Is there
nothing? If there is nothing at the point P, then how does a force act
when we place the charge q at P. In order to answer such questions, the
early scientists introduced the concept of field. According to this, we say
that the charge Q produces an electric field everywhere in the surrounding.
When another charge q is brought at some point P, the field there acts on
it and produces a force. The electric field produced by the charge Q  at a
point r is given as

( ) 2 2
0 0

1 1
ˆ ˆ

4 4
Q Q

r rε ε
= =

π π
E r r r (1.6)

where ˆ =r  r/r, is a unit vector from the origin to the point r. Thus, Eq.(1.6)
specifies the value of the electric field for each value of the position
vector r. The word “field” signifies how some distributed quantity (which
could be a scalar or a vector) varies with position. The effect of the charge
has been incorporated in the existence of the electric field. We obtain the
force F exerted by a charge Q on a charge q, as

2
0

1
ˆ

4
Qq

rε
=

π
F r (1.7)

Note that the charge q also exerts an equal and opposite force on the
charge Q. The electrostatic force between the charges Q and q can be
looked upon as an interaction between charge q and the electric field of
Q and vice versa. If we denote the position of charge q by the vector r, it
experiences a force F equal to the charge q multiplied by the electric
field E at the location of q. Thus,

F(r) = q E(r) (1.8)
Equation (1.8) defines the SI unit of electric field as N/C*.
Some important remarks may be made here:

(i) From Eq. (1.8), we can infer that if q is unity, the electric field due to
a charge Q is numerically equal to the force exerted by it. Thus, the
electric field due to a charge Q at a point in space may be defined
as the force that a unit positive charge would experience if placed

* An alternate unit V/m will be introduced in the next chapter.

FIGURE 1.11 Electric
field (a) due to a

charge Q, (b) due to a
charge –Q.
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at that point. The charge Q, which is producing the electric field, is
called a source charge and the charge q, which tests the effect of a
source charge, is called a test charge. Note that the source charge Q
must remain at its original location. However, if a charge q is brought
at any point around Q, Q itself is bound to experience an electrical
force due to q and will tend to move. A way out of this difficulty is to
make q negligibly small. The force F is then negligibly small but the
ratio F/q is finite and defines the electric field:

0
lim
q q→

⎛ ⎞
= ⎜ ⎟⎝ ⎠

F
E (1.9)

A practical way to get around the problem (of keeping Q undisturbed
in the presence of q) is to hold Q to its location by unspecified forces!
This may look strange but actually this is what happens in practice.
When we are considering the electric force on a test charge q due to a
charged planar sheet (Section 1.15), the charges on the sheet are held to
their locations by the forces due to the unspecified charged constituents
inside the sheet.
(ii) Note that the electric field E due to Q, though defined operationally

in terms of some test charge q, is independent of q. This is because
F is proportional to q, so the ratio F/q does not depend on q. The
force F on the charge q due to the charge Q depends on the particular
location of charge q which may take any value in the space around
the charge Q. Thus, the electric field E due to Q is also dependent on
the space coordinate r. For different positions of the charge q all over
the space, we get different values of electric field E. The field exists at
every point in three-dimensional space.

(iii) For a positive charge, the electric field will be directed radially
outwards from the charge. On the other hand, if the source charge is
negative, the electric field vector, at each point, points radially inwards.

(iv) Since the magnitude of the force F on charge q due to charge Q
depends only on the distance r of the charge q from charge Q,
the magnitude of the electric field E will also depend only on the
distance r. Thus at equal distances from the charge Q, the magnitude
of its electric field E is same. The magnitude of electric field E due to
a point charge is thus same on a sphere with the point charge at its
centre; in other words, it has a spherical symmetry.

1.8.1  Electric field due to a system of charges

Consider a system of charges q1, q2, ..., qn with  position vectors r1,
r2, ..., rn relative  to some origin O. Like the electric field at a point in
space due to a single charge, electric field at a point in space due to the
system of charges is defined to be the force experienced by a unit
test charge placed at that point, without disturbing the original
positions of charges q1, q2, ..., qn. We can use Coulomb’s law and the
superposition principle to determine this field at a point P denoted by
position vector r.
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Electric field E1 at r due to q1 at r1 is given by

E1 = 1

1P2

0 1P

1
ˆ

4
q

rπε
r

where 1Pr̂  is a unit vector in the direction from q1 to P,
and r1P is the distance between q1 and P.
In the same manner, electric field E2 at r due to q2 at
r2 is

E2 = 2

2P2

0 2P

1
ˆ

4
q

rπε
r

where 2Pr̂  is a unit vector in the direction from q2 to P
and r2P is the distance between q2 and P. Similar
expressions hold good for fields E3, E4, ..., En due to
charges q3, q4, ..., qn.
By the superposition principle, the electric field E at r
due to the system of charges is (as shown in Fig. 1.12)

E(r)  =  E1 (r) +  E2 (r)  + …  +  En(r)

        = 1 2
1P 2P P2 2 2

0 0 01P 2P P

1 1 1
ˆ ˆ ˆ...

4 4 4
n

n
n

qq q

r r rε ε ε
+ + +

π π π
r r r

E(r) i P2
10 P

1
ˆ 

4

n
i

i i

q

rε =

=
π ∑ r (1.10)

E is a vector quantity that varies from one point to another point in space
and is determined from the positions of the source charges.

1.8.2  Physical significance of electric field
You may wonder why the notion of electric field has been introduced
here at all. After all, for any system of charges, the measurable quantity
is the force on a charge which can be directly determined using Coulomb’s
law and the superposition principle [Eq. (1.5)]. Why then introduce this
intermediate quantity called the electric field?

For electrostatics, the concept of electric field is convenient, but not
really necessary. Electric field is an elegant way of characterising the
electrical environment of a system of charges. Electric field at a point in
the space around a system of charges tells you the force a unit positive
test charge would experience if placed at that point (without disturbing
the system). Electric field is a characteristic of the system of charges and
is independent of the test charge that you place at a point to determine
the field. The term field in physics generally refers to a quantity that is
defined at every point in space and may vary from point to point. Electric
field is a vector field, since force is a vector quantity.

The true physical significance of the concept of electric field, however,
emerges only when we go beyond electrostatics and deal with time-
dependent electromagnetic phenomena. Suppose we consider the force
between two distant charges q1, q2 in accelerated motion. Now the greatest
speed with which a signal or information can go from one point to another
is c, the speed of light. Thus, the effect of any motion of q1 on q2 cannot

FIGURE 1.12 Electric field at a
point due to a system of charges is
the vector sum of the electric fields

at the point due to individual
charges.
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arise instantaneously. There will be some time delay between the effect
(force on q2) and the cause (motion of q1). It is precisely here that the
notion of electric field (strictly, electromagnetic field) is natural and very
useful. The field picture is this: the accelerated motion of charge q1
produces electromagnetic waves, which then propagate with the speed
c, reach q2 and cause a force on q2. The notion of field elegantly accounts
for the time delay. Thus, even though electric and magnetic fields can be
detected only by their effects (forces) on charges, they are regarded as
physical entities, not merely mathematical constructs. They have an
independent dynamics of their own,  i.e., they evolve according to laws
of their own. They can also transport energy. Thus, a source of time-
dependent electromagnetic fields, turned on briefly and switched off, leaves
behind propagating electromagnetic fields transporting energy. The
concept of field was first introduced by Faraday and is now among the
central concepts in physics.

Example 1.8 An electron falls through a distance of 1.5 cm in a
uniform electric field of magnitude 2.0 × 104 N C–1 [Fig. 1.13(a)]. The
direction of the field is reversed keeping its magnitude unchanged
and a proton falls through the same distance [Fig. 1.13(b)]. Compute
the time of fall in each case. Contrast the situation with that of ‘free
fall under gravity’.

FIGURE 1.13

Solution In Fig. 1.13(a) the field is upward, so the negatively charged
electron experiences a downward force of magnitude eE where E is
the magnitude of the electric field. The acceleration of the electron is

ae  =  eE/me
where me is the mass of the electron.

Starting from rest, the time required by the electron to fall through a

distance h is given by  
22

e
e

e

h mh
t

a e E
= =

For e = 1.6 × 10–19C, me = 9.11 × 10–31 kg,

     E = 2.0 × 104 N C–1, h = 1.5 × 10–2 m,

  te = 2.9 × 10–9s

In Fig. 1.13 (b), the field is downward, and the positively charged
proton experiences a downward force of magnitude eE . The
acceleration of the proton is

ap  =  eE/mp

where mp is the mass of the proton; mp = 1.67 × 10–27 kg. The time of
fall for the proton is
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–722

1 3 10 sp
p

p

h mh
t .

a e E
= = = ×

Thus, the heavier particle (proton) takes a greater time to fall through
the same distance. This is in basic contrast to the situation of ‘free
fall under gravity’ where the time of fall is independent of the mass of
the body. Note that in this example we have ignored the acceleration
due to gravity in calculating the time of fall. To see if this is justified,
let us calculate the acceleration of the proton in the given electric
field:

p
p

e E
a

m
=

     
19 4 1

27

(1 6 10 C) (2 0 10 N C )
1 67 10 kg

. .

.

− −

−

× × ×
=

×

     12 –21 9 10 m s.= ×
which is enormous compared to the value of g (9.8 m s–2), the
acceleration due to gravity. The acceleration of the electron is even
greater. Thus, the effect of acceleration due to gravity can be ignored
in this example.

Example 1.9 Two point charges q1 and q2, of magnitude +10–8 C and
–10–8 C, respectively, are placed 0.1 m apart. Calculate the electric
fields at points A, B and C shown in Fig. 1.14.

FIGURE 1.14

Solution The electric field vector E1A at A due to the positive charge
q1 points towards the right and has a magnitude

9 2 -2 8

1A 2

(9 10 Nm C ) (10 C)
(0.05m)

E
−× ×

=  =  3.6 × 104  N C–1

The electric field vector E2A at A due to the negative charge q2 points
towards the right and has the same magnitude. Hence the magnitude
of the total electric field EA at A is

EA = E1A + E2A = 7.2 × 104 N C–1

EA is directed toward the right.
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The electric field vector E1B at B due to the positive charge q1 points
towards the left and has a magnitude

9 2 –2 8

1B 2

(9 10 Nm C ) (10 C)
(0.05 m)

E
−× ×

= = 3.6 × 104 N C–1

The electric field vector E2B at B due to the negative charge q2 points
towards the right and has a magnitude

9 2 –2 8

2B 2

(9 10 Nm C ) (10 C)
(0.15 m)

E
−× ×

= =  4 × 103  N C–1

The magnitude of the total electric field at B is
EB = E1B –  E2B = 3.2 × 104 N C–1

EB is directed towards the left.
The magnitude of each electric field vector at point C, due to charge
q1 and q2 is

     
9 2 –2 8

1C 2C 2

(9 10 Nm C ) (10 C)
(0.10 m)

E E
−× ×

= =  =  9 × 103  N C–1

The directions in which these two vectors point are indicated in
Fig. 1.14. The resultant of these two vectors is

1 2cos cos
3 3CE E E
π π

= + =  9 × 103  N C–1

EC points towards the right.

1.9  ELECTRIC FIELD LINES

We have studied electric field in the last section. It is a vector quantity
and can be represented as we represent vectors. Let us try to represent E
due to a point charge pictorially. Let the point charge be placed at the
origin. Draw vectors pointing along the direction of the electric field with
their lengths proportional to the strength of the field at
each point. Since the magnitude of electric field at a point
decreases inversely as the square of the distance of that
point from the charge, the vector gets shorter as one goes
away from the origin, always pointing radially outward.
Figure 1.15 shows such a picture.  In this figure, each
arrow indicates the electric field, i.e., the force acting on a
unit positive charge, placed at the tail of that arrow.
Connect the arrows pointing in one direction and the
resulting figure represents a field line. We thus get many
field lines, all pointing outwards from the point charge.
Have we lost the information about the strength or
magnitude of the field now, because it was contained in
the length of the arrow? No. Now the magnitude of the
field is represented by the density of field lines. E is strong
near the charge, so the density of field lines is more near
the charge and the lines are closer. Away from the charge,
the field gets weaker and the density of field lines is less,
resulting in well-separated lines.

Another person may draw more lines. But the number of lines is not
important. In fact, an infinite number of lines can be drawn in any region.

FIGURE 1.15 Field of a point charge.
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It is the relative density of lines in different regions which is
important.

We draw the figure on the plane of paper, i.e., in two-
dimensions but we live in three-dimensions. So if one wishes
to estimate the density of field lines, one has to consider the
number of lines per unit cross-sectional area, perpendicular
to the lines.  Since the electric field decreases as the square of
the distance from a point charge and the area enclosing the
charge increases as the square of the distance, the number
of field lines crossing the enclosing area remains constant,
whatever may be the distance of the area from the charge.

We started by saying that the field lines carry information
about the direction of electric field at different points in space.
Having drawn a certain set of field lines, the relative density
(i.e., closeness) of the field lines at different points indicates
the relative strength of electric field at those points. The field
lines crowd where the field is strong and are spaced apart
where it is weak. Figure 1.16 shows a set of field lines. We

can imagine two equal and small elements of area placed at points R and
S normal to the field lines there. The number of field lines in our picture
cutting the area elements is proportional to the magnitude of field at
these points. The picture shows that the field at R is stronger than at S.

To understand the dependence of the field lines on the area, or rather
the solid angle subtended by an area element, let us try to relate the
area with the solid angle, a generalization of angle to three dimensions.
Recall how a (plane) angle is defined in two-dimensions. Let a small
transverse line element Δl be placed at a distance r from a point O. Then
the angle subtended by Δl  at O can be approximated as Δθ = Δl/r.
Likewise, in three-dimensions the solid angle* subtended by a small
perpendicular plane area ΔS, at a distance r, can be written as
ΔΩ = ΔS/r2. We know that in a given solid angle the number of radial
field lines is the same. In Fig. 1.16, for two points P1 and P2 at distances
r1 and r2 from the charge, the element of area subtending the solid angle
ΔΩ is 2

1r ΔΩ at P1 and an element of area 2
2r ΔΩ at P2, respectively. The

number of lines (say n) cutting these area elements are the same. The
number of field lines, cutting unit area element is therefore n/( 2

1r ΔΩ) at
P1 andn/( 2

2r ΔΩ) at P2, respectively. Since n and ΔΩ are common, the
strength of the field clearly has a 1/r 2 dependence.

The picture of field lines was invented by Faraday to develop an
intuitive non- mathematical way of visualizing electric fields around
charged configurations. Faraday called them lines of force. This term is
somewhat misleading, especially in case of magnetic fields. The more
appropriate term is field lines (electric or magnetic) that we have
adopted in this book.

Electric field lines are thus a way of pictorially mapping the electric
field around a configuration of charges. An electric field line is, in general,

FIGURE 1.16  Dependence of
electric field strength on the

distance and its relation to the
number of field lines.

* Solid angle is a measure of a cone. Consider the intersection of the given cone
with a sphere of radius R. The solid angle ΔΩ of the cone is defined to be equal
to ΔS/R 2, where ΔS is the area on the sphere cut out by the cone.
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a curve drawn in such a way that the tangent to it at each
point is in the direction of the net field at that point. An
arrow on the curve is obviously necessary to specify the
direction of electric field from the two possible directions
indicated by a tangent to the curve. A field line is a space
curve, i.e., a curve in three dimensions.

Figure 1.17 shows the field lines around some simple
charge configurations. As mentioned earlier, the field lines
are in 3-dimensional space, though the figure shows them
only in a plane. The field lines of a single positive charge
are radially outward while those of a single negative
charge are radially inward. The field lines around a system
of two positive charges (q, q) give a vivid pictorial
description of their mutual repulsion, while those around
the configuration of two equal and opposite charges
(q, –q), a dipole, show clearly the mutual attraction
between the charges. The field lines follow some important
general properties:
(i) Field lines start from positive charges and end at

negative charges. If there is a single charge, they may
start or end at infinity.

(ii) In a charge-free region, electric field lines can be taken
to be continuous curves without any breaks.

(iii) Two field lines can never cross each other. (If they did,
the field at the point of intersection will not have a
unique direction, which is absurd.)

(iv) Electrostatic field lines do not form any closed loops.
This follows from the conservative nature of electric
field (Chapter 2).

1.10  ELECTRIC FLUX

Consider flow of a liquid with velocity v, through a small
flat surface dS, in a direction normal to the surface. The
rate of flow of liquid is given by the volume crossing the
area per unit time  v dS and represents the flux of liquid
flowing across the plane. If the normal to the surface is
not parallel to the direction of flow of liquid, i.e., to v, but
makes an angle θ with it, the projected area in a plane
perpendicular to v is v dS cos θ. Therefore the flux going
out of the surface dS is v. n̂ dS.

For the case of  the electric field, we define an
analogous quantity and call it electric flux.

We should however note that there is no flow of a
physically observable quantity unlike the case of liquid
flow.

In the picture of electric field lines described above,
we saw that the number of field lines crossing a unit area,
placed normal to the field at a point is a measure of the
strength of electric field at that point. This means that if

FIGURE 1.17 Field lines due to
some simple charge configurations.
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we place a small planar element of area ΔS
normal to E at a point, the number of field lines
crossing it is proportional* to E ΔS. Now
suppose we tilt the area element by angle θ.
Clearly, the number of field lines crossing the
area element will be smaller. The projection of
the area element normal to E is ΔS cosθ. Thus,
the number of field lines crossing ΔS is
proportional to E ΔS cosθ. When θ = 90°, field
lines will be parallel to ΔS and will not cross it
at all (Fig. 1.18).

The orientation of area element and not
merely its magnitude is important in many
contexts. For example, in a stream, the amount
of water flowing through a ring will naturally
depend on how you hold the ring. If you hold
it normal to the flow, maximum water will flow
through it than if you hold it with some other
orientation. This shows that an area element
should be treated as a vector. It has a

magnitude and also a direction. How to specify the direction of a planar
area? Clearly, the normal to the plane specifies the orientation of the
plane. Thus the direction of a planar area vector is along its normal.

How to associate a vector to the area of a curved surface? We imagine
dividing the surface into a large number of very small area elements.
Each small area element may be treated as planar and a vector associated
with it, as explained before.

Notice one ambiguity here. The direction of an area element is along
its normal. But a normal can point in two directions. Which direction do
we choose as the direction of the vector associated with the area element?
This problem is resolved by some convention appropriate to the given
context. For the case of a closed surface, this convention is very simple.
The vector associated with every area element of a closed surface is taken
to be in the direction of the outward normal. This is the convention used
in Fig. 1.19. Thus, the area element vector ΔS at a point on a closed

surface equals ΔS n̂  where ΔS is the magnitude of the area element and

n̂  is a unit vector in the direction of outward normal at that point.
We now come to the definition of electric flux. Electric flux Δφ through

an area element ΔS is defined by

Δφ = E.ΔS = E ΔS  cosθ (1.11)

which, as seen before, is proportional to the number of field lines cutting
the area element. The angle θ here is the angle between E and ΔS. For a
closed surface, with the convention stated already, θ is the angle between
E and the outward normal   to the area element. Notice we could look at
the expression E ΔS cosθ  in two ways:  E (ΔS cosθ ) i.e., E times the

FIGURE 1.18 Dependence of flux on the
inclination θ between E and n̂ .

FIGURE 1.19
Convention for
defining normal

n̂  and ΔS. * It will not be proper to say that the number of field lines is equal to EΔS. The
number of field lines is after all, a matter of how many field lines we choose to
draw. What is physically significant is the relative number of field lines crossing
a given area at different points.
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projection of area normal to E,  or E⊥ ΔS, i.e., component of E along the
normal to the area element times the magnitude of the area element. The
unit of electric flux is N C–1 m2.

The basic definition of electric flux given by Eq. (1.11) can be used, in
principle, to calculate the total flux through any given surface. All we
have to do is to divide the surface into small area elements, calculate the
flux at each element and add them up. Thus, the total flux φ through a
surface S is

φ ~ Σ E.ΔS (1.12)

The approximation sign is put because the electric field E is taken to
be constant over the small area element. This is mathematically exact
only when you take the limit ΔS → 0  and the sum in Eq. (1.12) is written
as an integral.

1.11  ELECTRIC DIPOLE

An electric dipole is a pair of equal and opposite point charges q and –q,
separated by a distance 2a. The line connecting the two charges defines
a direction in space. By convention, the direction from –q to q is said to
be the direction of the dipole. The mid-point of locations of –q and q is
called the centre of the dipole.

The total charge of the electric dipole is obviously zero. This does not
mean that the field of the electric dipole is zero. Since the charge q and
–q are separated by some distance, the electric fields due to them, when
added, do not exactly cancel out. However, at distances much larger than
the separation of the two charges forming a dipole (r >> 2a), the fields
due to q and –q nearly cancel out. The electric field due to a dipole
therefore falls off, at large distance, faster than like 1/r 2 (the dependence
on r of the field due to a single charge q). These qualitative ideas are
borne out by the explicit calculation as follows:

1.11.1  The field of an electric dipole
The electric field of the pair of charges (–q and q) at any point in space
can be found out from Coulomb’s law and the superposition principle.
The results are simple for the following two cases: (i) when the point is on
the dipole axis, and (ii) when it is in the equatorial plane of the dipole,
i.e.,  on a plane perpendicular to the dipole axis through its centre.  The
electric field at any general point P is obtained by adding the electric
fields E–q due to the charge –q and E+q due to the charge q, by the
parallelogram law of vectors.

(i) For points on the axis

Let the point P be at distance r from the centre of the dipole on the side of
the charge q,  as shown in Fig. 1.20(a). Then

2
0

ˆ
4 ( )q

q

r aε− = −
π +

E p [1.13(a)]

where p̂  is the unit vector along the dipole axis (from –q to q). Also

2
0

ˆ
4 ( )q

q

r aε+ =
π −

E p [1.13(b)]
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The total field at P is

2 2
0

1 1 ˆ
4 ( ) ( )q q

q

r a r aε+ −

⎡ ⎤
= + = −⎢ ⎥π − +⎣ ⎦

E E E p

    2 2 2

4
ˆ

4 ( )o

a rq

r aε
=

π −
p (1.14)

For r >> a

3
0

4
ˆ

4

q a

rε
=

π
E p                (r >> a) (1.15)

(ii) For points on the equatorial plane

The magnitudes of the electric fields due to the two
charges +q and –q are given by

2 2
0

1
4q

q
E

r aε+ =
π + [1.16(a)]

– 2 2
0

1
4q

q
E

r aε
=

π + [1.16(b)]

and are equal.
The directions of  E+q and E–q are as shown in

Fig. 1.20(b). Clearly, the components normal to the dipole
axis cancel away. The components along the dipole axis
add up. The total electric field is opposite to p̂ . We have

E = – (E +q + E –q ) cosθ  p̂

2 2 3/2

2
ˆ

4 ( )o

q a

r aε
= −

π +
p (1.17)

At large distances (r >> a), this reduces to

3

2 ˆ ( )
4 o

q a
r a

rε
= − >>

π
E p (1.18)

From Eqs. (1.15) and (1.18), it is clear that the dipole field at large
distances does not involve q and a separately; it depends on the product
qa. This suggests the definition of dipole moment. The dipole moment
vector p of an electric dipole is defined by

p  = q × 2a p̂ (1.19)
that is, it is a vector whose magnitude is charge q times the separation
2a (between the pair of charges q, –q) and the direction is along the line
from –q to q. In terms of p, the electric field of a dipole at large distances
takes simple forms:
At a point on the dipole axis

3

2
4 orε

=
π

p
E (r >> a) (1.20)

At a point on the equatorial plane

34 orε
= −

π
p

E (r >> a) (1.21)

FIGURE 1.20 Electric field of a dipole
at (a) a point on the axis, (b) a point
on the equatorial plane of the dipole.

p is the dipole moment vector of
magnitude p = q × 2a  and

directed from –q to q.
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 Notice the important point that the dipole field at large distances
falls off not as 1/r2 but as1/r3. Further,  the magnitude and the direction
of the dipole field depends not only on the distance r but also on the
angle between the position vector r and the dipole moment p.

We can think of the limit when the dipole size 2a approaches zero,
the charge q approaches infinity in such a way that the product
p = q × 2a is finite. Such a dipole is referred to as a point dipole. For a
point dipole, Eqs. (1.20) and (1.21) are exact, true for any r.

1.11.2  Physical significance of dipoles
In most molecules, the centres of positive charges and of negative charges*
lie at the same place. Therefore, their dipole moment is zero. CO2 and
CH4 are of this type of molecules. However, they develop a dipole moment
when an electric field is applied. But in some molecules, the centres of
negative charges and of positive charges do not coincide. Therefore they
have a permanent electric dipole moment, even in the absence of an electric
field. Such molecules are called polar molecules. Water molecules, H2O,
is an example of this type. Various materials give rise to interesting
properties and important applications in the presence or  absence of
electric field.

Example 1.10 Two charges ±10 μC are placed 5.0 mm apart.
Determine the electric field at (a) a point P on the axis of the dipole
15 cm away from its centre O on the side of the positive charge, as
shown in Fig. 1.21(a), and (b) a point Q, 15 cm away from O on a line
passing through O and normal to the axis of the dipole, as shown in
Fig. 1.21(b).

FIGURE 1.21

* Centre of a collection of positive point charges is defined much the same way

as the centre of mass: 
cm

i ii

i
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Solution  (a) Field at P due to charge +10 μC

= 
5

12 2 1 2

10 C

4 (8.854 10 C N m )

−

− − −π × 2 4 2

1

(15 0.25) 10 m−×
− ×

=  4.13 × 106  N C–1  along BP
Field at P due to charge –10 μC

–5

12 2 1 2

10 C
4 (8.854 10 C N m )− − −=
π ×  2 4 2

1
(15 0.25) 10 m−×

+ ×

=  3.86 × 106  N C–1 along PA
The resultant electric field at P due to the two charges at A and B is
=  2.7 × 105  N C–1  along BP.
In this example, the ratio OP/OB is quite large (= 60). Thus, we can
expect to get approximately the same result as above by directly using
the formula for electric field at a far-away point on the axis of a dipole.
For a dipole consisting of charges ± q, 2a distance apart, the electric
field at a distance r from the centre on the axis of the dipole has a
magnitude

3
0

2

4

p
E

rε
=

π (r/a >> 1)

where p = 2a q is the magnitude of the dipole moment.
The direction of electric field on the dipole axis is always along the
direction of the dipole moment vector (i.e., from –q to q). Here,
p =10–5 C × 5 × 10–3 m  = 5 × 10–8 C m
Therefore,

E  =
8

12 2 1 2

2 5 10 Cm

4 (8.854 10 C N m )

−

− − −

× ×
π × 3 6 3

1

(15) 10 m−×
×  = 2.6 × 105  N C–1

along the dipole moment direction AB, which is close to the result
obtained earlier.
(b) Field at Q due to charge + 10 μC at B

=
5

12 2 1 2

10 C
4 (8.854 10 C N m )

−

− − −π × 2 2 4 2

1

[15 (0.25) ] 10 m−+ ×
×

=  3.99 × 106  N C–1 along BQ

Field at Q due to charge –10 μC at A

=
5

12 2 1 2

10 C

4 (8.854 10 C N m )

−

− − −π × 2 2 4 2

1

[15 (0.25) ] 10 m−+ ×
×

=  3.99 × 106  N C–1 along QA.

Clearly, the components of these two forces with equal magnitudes
cancel along the direction OQ but add up along the direction parallel
to BA. Therefore, the resultant electric field at Q due to the two
charges at A and B is

= 2 × 
6 –1

2 2

0.25
3.99 10 N C

15 (0.25)
× ×

+
along BA

=  1.33 × 105  N C–1 along BA.
As in (a), we can expect to get approximately the same result by
directly using the formula for dipole field at a point on the normal to
the axis of the dipole:
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34
p

E
rε0

=
π (r/a >> 1)

8

12 2 –1 –2

5 10 Cm
4 (8.854 10 C N m )

−

−

×
=

π × 3 6 3

1
(15) 10 m−×

×

=  1.33 × 105  N C–1.
The direction of electric field in this case is opposite to the direction
of the dipole moment vector. Again the result agrees with that obtained
before.

1.12  DIPOLE IN A UNIFORM EXTERNAL FIELD

Consider a permanent dipole of dipole moment p in a uniform
external field E, as shown in Fig. 1.22. (By permanent dipole, we
mean that p exists  irrespective of E; it has not been induced by E.)

There is a force qE on q and a force –qE on –q. The net force on
the dipole is zero, since E is uniform. However, the charges are
separated, so the forces act at different points, resulting in a torque
on the dipole. When the net force is zero, the torque (couple) is
independent of the origin. Its magnitude equals the magnitude of
each force multiplied by the arm of the couple (perpendicular
distance between the two antiparallel forces).

Magnitude of torque = q E × 2 a sinθ
       = 2 q a E sinθ

Its direction is normal to the plane of the paper, coming out of it.
The magnitude of p × E is also p E sinθ and its direction

is normal to the paper, coming out of it. Thus,

τττττ  = p × E (1.22)

This torque will tend to align the dipole with the field
E. When p is aligned with E, the torque is zero.

What happens if the field is not uniform? In that case,
the net force will evidently be non-zero. In addition there
will, in general, be a torque on the system as before. The
general case is involved, so let us consider the simpler
situations when p is parallel to E or antiparallel to E. In
either case, the net torque is zero, but there is a net force
on the dipole if E is not uniform.

Figure 1.23 is self-explanatory. It is easily seen that
when p is parallel to E, the dipole has a net force in the
direction of increasing field. When p is antiparallel to E,
the net force on the dipole is in the direction of decreasing
field. In general, the force depends on the orientation of p
with respect to E.

This brings us to a common observation in frictional
electricity. A comb run through dry hair attracts pieces of
paper. The comb, as we know, acquires charge through
friction. But the paper is not charged. What then explains
the attractive force? Taking the clue from the preceding

FIGURE 1.22 Dipole in a
uniform electric field.

FIGURE 1.23 Electric force on a
dipole: (a) E parallel to p, (b)  E

antiparallel to p.
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discussion, the charged comb ‘polarizes’ the piece of paper, i.e., induces
a net dipole moment in the direction of field. Further, the electric field
due to the comb is not uniform. In this situation, it is easily seen that the
paper should move in the direction of the comb!

1.13  CONTINUOUS CHARGE DISTRIBUTION

We have so far dealt with charge configurations involving discrete charges
q1, q2, ..., qn. One reason why we restricted to discrete charges is that the
mathematical treatment is simpler and does not involve calculus. For
many purposes, however, it is impractical to work in terms of discrete
charges and we need to work with continuous charge distributions. For
example, on the surface of a charged conductor, it is impractical to specify
the charge distribution in terms of the locations of the microscopic charged
constituents. It is more feasible to consider an area element ΔS (Fig. 1.24)
on the surface of the conductor (which is very small on the macroscopic
scale but big enough to include a very large number of electrons) and
specify the charge ΔQ on that element. We then define a surface charge
density σ at the area element by

Q

S
σ Δ
=
Δ

(1.23)

We can do this at different points on the conductor and thus arrive at
a continuous function σ, called the surface charge density. The surface
charge density σ  so defined ignores the quantisation of charge and the
discontinuity in charge distribution at the microscopic level*. σ  represents
macroscopic surface charge density, which in a sense, is a smoothed out
average of the microscopic charge density over an area element ΔS which,
as said before, is large microscopically but small macroscopically. The
units for σ are C/m2.

Similar considerations apply for a line charge distribution and a volume
charge distribution. The linear charge density λ of a wire is defined by

Q
l

λ
Δ

=
Δ (1.24)

where Δl is a small line element of wire on the macroscopic scale that,
however, includes a large number of microscopic charged constituents,
and ΔQ is the charge contained in that line element. The units for λ are
C/m. The volume charge density (sometimes simply called charge density)
is defined in a similar manner:

Q

V
ρ Δ
=
Δ (1.25)

where ΔQ is the charge included in the macroscopically small volume
element ΔV that includes a large number of microscopic charged
constituents. The units for ρ are C/m3.

The notion of continuous charge distribution is similar to that we
adopt for continuous mass distribution in mechanics. When we refer to

FIGURE 1.24
Definition of linear,
surface and volume

charge densities.
In each case, the

element (Δl, ΔS, ΔV )
chosen is small on
the macroscopic

scale but contains
a very large number

of microscopic
constituents.

* At the microscopic level, charge distribution is discontinuous, because they are
discrete charges separated by intervening space where there is no charge.
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the density of a liquid, we are referring to its macroscopic density. We
regard it as a continuous fluid and ignore its discrete molecular
constitution.

The field due to a continuous charge distribution can be obtained in
much the same way as for a system of discrete charges, Eq. (1.10). Suppose
a continuous charge distribution in space has a charge density ρ. Choose
any convenient origin O and let the position vector of any point in the
charge distribution be r. The charge density ρ may vary from point to
point, i.e., it is a function of r. Divide the charge distribution into small
volume elements of size ΔV. The charge in a volume element ΔV is ρΔV.

Now, consider any general point P (inside or outside the distribution)
with position vector R (Fig. 1.24). Electric field due to the charge ρΔV is
given by Coulomb’s law:

2
0

1
ˆ

4
V

'
r'

ρ
ε

Δ
Δ =

π
E r (1.26)

where r′ is the distance between the charge element and P, and  r̂ ′ is a
unit vector in the direction from the charge element to P. By the
superposition principle, the total electric field due to the charge
distribution is obtained by summing over electric fields due to different
volume elements:

2
0

1
ˆ

4 all V

V
'

r'

ρ
ε Δ

Δ
≅ Σ

π
E r (1.27)

Note that ρ, r′,  ˆ ′r  all can vary from point to point. In a strict
mathematical method, we should let ΔV→0 and the sum then becomes
an integral; but we omit that discussion here, for simplicity. In short,
using Coulomb’s law and the superposition principle, electric field can
be determined for any charge distribution, discrete or continuous or part
discrete and part continuous.

1.14  GAUSS’S LAW

As a simple application of the notion of electric flux, let us consider the
total flux through a sphere of radius r, which encloses a point charge q
at its centre. Divide the sphere into small area elements, as shown in
Fig. 1.25.

The flux through an area element ΔS is

2
0

ˆ
4

q

r
φ

ε
Δ = Δ = Δ

π
E S r Si i (1.28)

where we have used Coulomb’s law for the electric field due to a single
charge q. The unit vector r̂  is along the radius vector from the centre to
the area element. Now, since the normal to a sphere at every point is
along the radius vector at that point, the area element ΔS and r̂   have
the same direction. Therefore,

2
04
q

S
r

φ
ε

Δ = Δ
π (1.29)

since the magnitude of a unit vector is 1.
The total flux through the sphere is obtained by adding up flux

through all the different area elements:

FIGURE 1.25 Flux
through a sphere
enclosing a point

charge q at its centre.
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2
04all S

q
S

r
φ

εΔ
= Σ Δ

π

Since each area element of the sphere is at the same
distance r from the charge,

2 2
04 4all S

o

q q
S S

r r
φ

ε εΔ
= Σ Δ =

π π

Now S, the total area of the sphere, equals 4πr2. Thus,

2
2

00

4
4

q q
r

r
φ

εε
= × π =

π (1.30)

Equation (1.30) is a simple illustration of a general result of
electrostatics called Gauss’s law.

We state Gauss’s law without proof:
Electric flux through a closed surface S

= q/ε0 (1.31)

q = total charge enclosed by S.
The law implies that the total electric flux through a closed surface is

zero if no charge is enclosed by the surface. We can see that explicitly in
the simple situation of Fig. 1.26.

Here the electric field is uniform and we are considering a closed
cylindrical surface, with its axis parallel to the uniform field E. The total
flux φ  through the surface is  φ = φ1 + φ2 + φ3, where φ1 and φ2 represent
the flux through the surfaces 1 and 2 (of circular cross-section) of the
cylinder and φ3 is the flux through the curved cylindrical part of the
closed surface. Now the normal to the surface 3 at every point is
perpendicular to E, so by definition of flux, φ3 = 0. Further, the outward
normal to 2 is along E while the outward normal to 1 is opposite to E.
Therefore,

φ1 = –E S1,     φ2 = +E S2

S1 = S2 = S

where S is the area of circular cross-section. Thus, the total flux is zero,
as expected by Gauss’s law. Thus, whenever you find that the net electric
flux through a closed surface is zero, we conclude that the total charge
contained in the closed surface is zero.

The great significance of Gauss’s law Eq. (1.31), is that it is true in
general, and not only for the simple cases we have considered above. Let
us note some important points regarding this law:
(i) Gauss’s law is true for any closed surface, no matter what its shape

or size.
(ii) The term q on the right side of Gauss’s law, Eq. (1.31), includes the

sum of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(iii) In the situation when the surface is so chosen that there are some
charges inside and some outside, the electric field [whose flux appears
on the left side of Eq. (1.31)] is due to all the charges, both inside and
outside S. The term q on the right side of Gauss’s law, however,
represents only the total charge inside S.

FIGURE 1.26 Calculation of the
flux of uniform electric field

through the surface of a cylinder.
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(iv) The surface that we choose for the application of Gauss’s law is called
the Gaussian surface. You may choose any Gaussian surface and
apply Gauss’s law. However, take care not to let the Gaussian surface
pass through any discrete charge. This is because electric field due
to a system of discrete charges is not well defined at the location of
any charge. (As you go close to the charge, the field grows without
any bound.) However, the Gaussian surface can pass through a
continuous charge distribution.

(v) Gauss’s law is often useful towards a much easier calculation of the
electrostatic field when the system has some symmetry. This is
facilitated by the choice of a suitable Gaussian surface.

(vi) Finally, Gauss’s law is based on the inverse square dependence on
distance contained in the Coulomb’s law. Any violation of Gauss’s
law will indicate departure from the inverse square law.

Example 1.11 The electric field components in Fig. 1.27 are
Ex = αx1/2, Ey = Ez = 0, in which α = 800 N/C m1/2. Calculate (a) the
flux through the cube, and (b) the charge within the cube. Assume
that a = 0.1 m.

FIGURE 1.27
Solution
(a) Since the electric field has only an x component, for faces

perpendicular to x direction, the angle between E and ΔS is
± π/2. Therefore, the flux  φ = E.ΔS is separately zero for each face
of the cube except the two shaded ones. Now the magnitude of
the electric field at the left face is
EL = αx1/2 = αa1/2

(x = a at the left face).
The magnitude of electric field at the right face is
ER = α x1/2 = α (2a)1/2

(x = 2a at the right face).
The corresponding fluxes are

φL= EL
.ΔS = ˆL LSΔ E n⋅ =EL ΔS cosθ = –EL ΔS, since θ = 180°

   = –ELa
2

φR= ER
.ΔS = ER ΔS cosθ  = ER ΔS,   since θ = 0°

   = ERa2

Net flux through the cube
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= φR + φL = ERa2 – ELa
2 = a2 (ER – EL) = αa2 [(2a)1/2 – a1/2]

=  αa5/2 ( )2 –1

=  800 (0.1)5/2 ( )2 –1

= 1.05 N m2 C–1

(b) We can use Gauss’s law to find the total charge q inside the cube.
We have φ = q/ε0 or q = φε0. Therefore,

  q = 1.05 × 8.854 × 10–12 C = 9.27 × 10–12 C.

Example 1.12 An electric field is uniform, and in the positive x
direction for positive x, and uniform with the same magnitude but in
the negative x direction for negative x. It is given that E = 200 î   N/C
for x > 0 and E = –200 î  N/C for x < 0. A right circular cylinder of
length 20 cm and radius 5 cm has its centre at the origin and its axis
along the x-axis so that one face is at x = +10 cm and the other is at
x = –10 cm (Fig. 1.28). (a) What is the net outward flux through each
flat face? (b) What is the flux through the side of the cylinder?
(c) What is the net outward flux through the cylinder? (d) What is the
net charge inside the cylinder?

Solution
(a) We can see from the figure that on the left face E and ΔS are

parallel. Therefore, the outward flux is

φL= E.ΔS = – 200 ˆ Δi Si

=  + 200 ΔS, since  ˆ Δi Si = – ΔS
=  + 200 × π (0.05)2 = + 1.57 N m2 C–1

On the right face, E and ΔS are parallel and therefore
φR =  E.ΔS =  + 1.57 N m2 C–1.

(b) For any point on the side of the cylinder E is perpendicular to
ΔS and hence E.ΔS = 0. Therefore, the flux out of the side of the
cylinder is zero.

(c) Net outward flux through the cylinder
φ = 1.57 + 1.57 + 0 = 3.14 N m2 C–1

FIGURE 1.28

 (d) The net charge within the cylinder can be found by using Gauss’s
law which gives
q =  ε0φ
   =  3.14 × 8.854 × 10–12  C
   =  2.78 × 10–11 C
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1.15  APPLICATIONS OF GAUSS’S LAW

The electric field due to a general charge distribution is, as seen above,
given by Eq. (1.27). In practice, except for some special cases, the
summation (or integration) involved in this equation cannot be carried
out to give electric field at every point in
space. For some symmetric charge
configurations, however, it is possible to
obtain the electric field in a simple way using
the Gauss’s law. This is best understood by
some examples.

1.15.1 Field due to an infinitely
long straight uniformly
charged wire

Consider an infinitely long thin straight wire
with uniform linear charge density λ. The wire
is obviously an axis of symmetry. Suppose we
take the radial vector from O to P and rotate it
around the wire. The points P, P′, P′′ so
obtained are completely equivalent with
respect to the charged wire. This implies that
the electric field must have the same magnitude
at these points. The direction of electric field at
every point must be radial (outward if λ > 0,
inward if λ < 0). This is clear from Fig. 1.29.

Consider a pair of line elements P1 and P2
of the wire, as shown. The electric fields
produced by the two elements of the pair when
summed give a resultant electric field which
is radial (the components normal to the radial
vector cancel). This is true for any such pair
and hence the total field at any point P is
radial. Finally, since the wire is infinite,
electric field does not depend on the position
of P along the length of the wire. In short, the
electric field is everywhere radial in the plane
cutting the wire normally, and its magnitude
depends only on the radial distance r.

To calculate the field, imagine a cylindrical
Gaussian surface, as shown in the Fig. 1.29(b).
Since the field is everywhere radial, flux
through the two ends of the cylindrical
Gaussian surface is zero. At the cylindrical
part of the surface, E is normal to the surface
at every point, and its magnitude is constant,
since it depends only on r. The surface area
of the curved part is  2πrl, where l is the length
of the cylinder.

FIGURE 1.29 (a) Electric field due to an
infinitely long thin straight wire is radial,
(b) The Gaussian surface for a long thin
wire of uniform linear charge density.
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Flux through the Gaussian surface

= flux through the curved cylindrical part of the surface

= E × 2πrl

The surface includes charge equal to λ l. Gauss’s law then gives
E × 2πrl = λl/ε0

i.e., E  = 
02 r

λ
επ

Vectorially, E at any point is given by

0

ˆ
2 r

λ
ε

=
π

E n (1.32)

where n̂  is the radial unit vector in the plane normal to the wire passing
through the point. E is directed outward if λ is positive and inward if λ is
negative.

Note that when we write a vector A as a scalar multiplied by a unit
vector, i.e., as A = A â , the scalar A is  an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector â if A > 0 and opposite to â  if A < 0. When we want to restrict to
non-negative values, we use the symbol A and call it the modulus of A .
Thus, 0≥A .

Also note that though only  the charge enclosed by the surface (λl )
was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.
Without this assumption, we cannot take E to be normal to the curved
part of the cylindrical Gaussian surface. However, Eq. (1.32) is
approximately true for electric field around the central portions of a long
wire, where the end effects may be ignored.

1.15.2  Field due to a uniformly charged infinite plane sheet
Let σ be the uniform surface charge density of an infinite plane sheet
(Fig. 1.30). We take the x-axis normal to the given plane. By symmetry,
the electric field will not depend on y and z coordinates and its direction

at every point must be parallel to the x-direction.
We can take the Gaussian surface to be a

rectangular parallelepiped of cross sectional area
A, as shown. (A cylindrical surface will also do.) As
seen from the figure, only the two faces 1 and 2 will
contribute to the flux; electric field lines are parallel
to the other faces and they, therefore, do not
contribute to the total flux.

The unit vector normal to surface 1 is in –x
direction while  the unit  vector normal to surface 2
is in the +x direction. Therefore, flux  E.ΔS through
both the surfaces are equal and add up. Therefore
the net flux through the Gaussian surface is 2 EA.
The charge enclosed by the closed surface is σA.
Therefore by Gauss’s law,

FIGURE 1.30 Gaussian surface for a
uniformly charged infinite plane sheet.
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2 EA = σA/ε0
or,  E = σ/2ε0
Vectorically,

0

ˆ
2
σ
ε

=E n (1.33)

where n̂  is a unit vector normal to the plane and going away from it.
E is directed away from the plate if σ  is positive and toward the plate

if σ is negative. Note that the above application of the Gauss’ law has
brought out an additional fact: E is independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the
middle regions of the planar sheet, away from the ends.

1.15.3  Field due to a uniformly charged thin spherical shell
Let σ be the uniform surface charge density of a thin spherical shell of
radius R (Fig. 1.31). The situation has obvious spherical symmetry. The
field at any point P, outside or inside, can depend only on r (the radial
distance from the centre of the shell to the point) and must be radial (i.e.,
along the radius vector).

(i) Field outside the shell: Consider a point P outside the
shell with radius vector r. To calculate E at P, we take the
Gaussian surface to be a sphere of radius r and with centre
O, passing through P. All points on this sphere are equivalent
relative to the given charged configuration. (That is what we
mean by spherical symmetry.) The electric field at each point
of the Gaussian surface, therefore, has the same magnitude
E and is along the radius vector at each point. Thus, E and
ΔS at every point are parallel and the flux through each
element is E ΔS. Summing over all ΔS, the flux through the
Gaussian surface is E × 4 π r 2. The charge enclosed is
σ × 4 π R 2. By Gauss’s law

E × 4 π r 2 = 
2

0

4 R
σ
ε

π

Or,  
2

2 2
0 04
R q

E
r r

σ
ε ε

= =
π

where q  =  4 π R2 σ is the total charge on the spherical shell.
Vectorially,

2
0

ˆ
4

q

rε
=

π
E r (1.34)

The electric field is directed outward if q > 0 and inward if
q < 0. This, however, is exactly the field produced by a charge
q placed at the centre O. Thus for points outside the shell, the field due
to a uniformly charged shell is as if  the entire charge of the shell is
concentrated at its centre.

(ii) Field inside the shell: In Fig. 1.31(b), the point P is inside the
shell. The Gaussian surface is again a sphere through P centred at O.

FIGURE 1.31 Gaussian
surfaces for a point with

(a) r > R, (b) r < R.
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The flux through the Gaussian surface, calculated as before, is
E × 4 π r2. However, in this case, the Gaussian surface encloses no
charge. Gauss’s law then gives
E × 4 π r2 =  0
i.e., E = 0          (r < R ) (1.35)

that is, the field due to a uniformly charged thin shell is zero at all points
inside the shell*. This important result is a direct consequence of Gauss’s
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/r2 dependence in Coulomb’s law.

Example 1.13 An early model for an atom considered it to have a
positively charged point nucleus of charge Ze, surrounded by a
uniform density of negative charge up to a radius R. The atom as a
whole is neutral. For this model, what is the electric field at a distance
r from the nucleus?

FIGURE 1.32

Solution  The charge distribution for this model of the atom is as
shown in Fig. 1.32. The total negative charge in the uniform spherical
charge distribution of radius R must be –Z e, since the atom (nucleus
of charge Z e + negative charge) is neutral. This immediately gives us
the negative charge density ρ, since we must have

34
0–

3

R
Zeρ

π
=

or 3

3
4

Ze

R
ρ = −

π

To find the electric field E(r) at a point P which is a distance r away
from the nucleus, we use Gauss’s law. Because of the spherical
symmetry of the charge distribution, the magnitude of the electric
field E(r) depends only on the radial distance, no matter what the
direction of r. Its direction is along (or opposite to) the radius vector r
from the origin to the point P. The obvious Gaussian surface is a
spherical surface centred at the nucleus. We consider two situations,
namely, r < R and r > R.
(i) r < R : The electric flux φ enclosed by the spherical surface is

    φ  =  E (r ) × 4 π r 2

where E (r )  is the magnitude of the electric field at r. This is because

* Compare this with a uniform mass shell discussed in Section 8.5 of Class XI
Textbook of Physics.
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the field at any point on the spherical Gaussian surface has the
same direction as the normal to the surface there,  and has the same
magnitude at all points on the surface.
The charge q enclosed by the Gaussian surface is the positive nuclear
charge and the negative charge within the sphere of radius r,

i.e., 
34

3

r
q Z e ρ

π
= +

Substituting for the charge density ρ  obtained earlier, we have
3

3

r
q Z e Z e

R
= −

Gauss’s law then gives,

2 3
0

1
( ) ;

4
Z e r

E r r R
r Rε

⎛ ⎞= − <⎜ ⎟⎝ ⎠π

The electric field is directed radially outward.
(ii) r > R:  In this case, the total charge enclosed by the Gaussian
spherical surface is zero since the atom is neutral. Thus, from Gauss’s
law,
E (r ) × 4 π  r 2 = 0  or  E (r ) = 0;    r > R
At r = R, both cases give the same result: E = 0.

ON SYMMETRY OPERATIONS

In Physics, we often encounter systems with various symmetries. Consideration of these
symmetries helps one arrive at results much faster than otherwise by a straightforward
calculation. Consider, for example an infinite uniform sheet of charge (surface charge
density σ) along the y-z plane. This system is unchanged if (a) translated parallel to the
y-z plane in any direction, (b) rotated about the x-axis through any angle. As the system
is unchanged under such symmetry operation, so must its properties be. In particular,
in this example, the electric field E must be unchanged.

Translation symmetry along the y-axis shows that the electric field must be the same
at a point (0, y1, 0) as at (0, y2, 0). Similarly translational symmetry along the z-axis
shows that the electric field at two point (0, 0, z1) and (0, 0, z2) must be the same. By
using rotation symmetry around the x-axis, we can conclude that E must be
perpendicular to the y-z plane, that is, it must be parallel to the x-direction.

Try to think of a symmetry now which will tell you that the magnitude of the electric
field is a constant, independent of the x-coordinate. It thus turns out that the magnitude
of the electric field due to a uniformly charged infinite conducting sheet is the same at all
points in space. The direction, however, is opposite of each other on either side of the
sheet.

Compare this with the effort needed to arrive at this result by a direct calculation
using Coulomb’s law.
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SUMMARY

1. Electric and magnetic forces determine the properties of atoms,
molecules and bulk matter.

2. From simple experiments on frictional electricity, one can infer that
there are two types of charges in nature; and that like charges repel
and unlike charges attract. By convention, the charge on a glass rod
rubbed with silk is positive; that on a plastic rod rubbed with fur is
then negative.

3. Conductors allow movement of electric charge through them, insulators
do not. In metals, the mobile charges are electrons; in electrolytes
both positive and negative ions are mobile.

4. Electric charge has three basic properties: quantisation, additivity
and conservation.

Quantisation of electric charge means that total charge (q) of a body
is always an integral multiple of a basic quantum of charge (e) i.e.,
q = n e, where n = 0, ±1, ±2, ±3, .... Proton and electron have charges
+e, –e, respectively. For macroscopic charges for which n is a very large
number, quantisation of charge can be ignored.

Additivity of electric charges means that the total charge of a system
is the algebraic sum (i.e., the sum taking into account proper signs)
of all individual charges in the system.

Conservation of electric charges means that the total charge of an
isolated system remains unchanged with time. This means that when
bodies are charged through friction, there is a transfer of electric charge
from one body to another, but no creation or destruction of charge.

5. Coulomb’s Law: The mutual electrostatic force between two point
charges q1 and q2 is proportional to the product q1q2 and inversely
proportional to the square of the distance r21 separating them.
Mathematically,

F21 = force on q2 due to  1 2
1 212

21

ˆ
k (q q )

q
r

= r

where 21r̂  is a unit vector in the direction from q1 to q2 and k =  
0

1
4 επ

is the constant of proportionality.

In SI units, the unit of charge is coulomb. The experimental value of
the constant ε0 is

ε0 = 8.854 × 10–12 C2 N–1 m–2

The approximate value of k is

k = 9 × 109 N m2 C–2

6. The ratio of electric force and gravitational force between a proton
and an electron is

2
392 4 10

e p

k e
.

G m m
≅ ×

7. Superposition Principle: The principle is based on the property that the
forces with which two charges attract or repel each other are not
affected by the presence of a third (or more) additional charge(s). For
an assembly of charges q1, q2, q3, ..., the force on any charge, say q1, is
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the vector sum of the force on  q1 due to q2, the force on q1 due to q3,
and so on. For each pair, the force is given by the Coulomb’s law for
two charges stated earlier.

8. The electric field E at a point due to a charge configuration is the
force on a small positive test charge q placed at the point divided by
the magnitude of the charge. Electric field due to a point charge q has
a magnitude |q|/4πε0r

2; it is radially outwards from q, if q is positive,
and radially inwards if q is negative. Like Coulomb force, electric field
also satisfies superposition principle.

9. An electric field line is a curve drawn in such a way that the tangent
at each point on the curve gives the direction of electric field at that
point. The relative closeness of field lines indicates the relative strength
of electric field at different points; they crowd near each other in regions
of strong electric field and are far apart where the electric field is
weak. In regions of constant electric field, the field lines are uniformly
spaced parallel straight lines.

10. Some of the important properties of field lines are: (i) Field lines are
continuous curves without any breaks. (ii) Two field lines cannot cross
each other. (iii) Electrostatic field lines start at positive charges and
end at negative charges —they cannot form closed loops.

11. An electric dipole is a pair of equal and opposite charges q and –q
separated by some distance 2a. Its dipole moment vector p has
magnitude 2qa and is in the direction of the dipole axis from –q to q.

12. Field of an electric dipole in its equatorial plane (i.e., the plane
perpendicular to its axis and passing through its centre) at a distance
r from the centre:

2 2 3/2

1
4 ( )o a rε
−

=
π +
p

E

3 ,
4 o

for r a
rε

−
≅ >>

π
p

Dipole electric field on the axis at a distance r from the centre:

2 2 2
0

2
4 ( )

r

r aε
=

π −
p

E

3
0

2
4

for r a
rε

≅ >>
π

p

The 1/r3 dependence of dipole electric fields should be noted in contrast
to the 1/r2 dependence of electric field due to a point charge.

13. In a uniform electric field E, a dipole experiences a torque τ  given by

τ  = p × E

but experiences no net force.

14. The flux Δφ of electric field E through a small area element ΔS is
given by

 Δφ  = E.ΔS

The vector area element ΔS is

ΔS = ΔS n̂

where ΔS is the magnitude of the area element and n̂  is normal to the
area element, which can be considered planar for sufficiently small ΔS.



44

Physics

For an area element of a closed surface, n̂  is taken to be the direction
of outward normal, by convention.

15. Gauss’s law: The flux of electric field through any closed surface S is
1/ε0 times the total charge enclosed by S. The law is especially useful
in determining electric field E, when the source distribution has simple
symmetry:

(i) Thin infinitely long straight wire of uniform linear charge density λ

0

ˆ
2 r

λ
ε

=
π

E n

where r is the perpendicular distance of the point from the wire and

n̂ is the radial unit vector in the plane normal to the wire passing
through the point.

(ii) Infinite thin plane sheet of uniform surface charge density σ

0

ˆ
2
σ
ε

=E n

where n̂  is a unit vector normal to the plane, outward on either side.

(iii) Thin spherical shell of uniform surface charge density σ

2
0

ˆ ( )
4

q
r R

rε
= ≥

π
E r

E = 0      (r   <   R )

where r is the distance of the point from the centre of the shell and R
the radius of the shell. q is the total charge of the shell:  q = 4πR2σ.

The electric field outside the shell is as though the total charge is
concentrated at the centre. The same result is true for a solid sphere
of uniform volume charge density. The field is zero at all points inside
the shell

Physical quantity Symbol Dimensions Unit Remarks

Vector area element Δ S [L2] m2 ΔS = ΔS n̂

Electric field E [MLT–3A–1] V m–1

Electric flux φ [ML3 T–3A–1] V m Δφ  =  E.ΔS

Dipole moment p [LTA] C m Vector directed
from negative to
positive charge

Charge density

linear λ [L–1 TA] C m–1  Charge/length

surface σ [L–2 TA] C m–2 Charge/area

volume ρ [L–3 TA] C m–3 Charge/volume
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POINTS TO PONDER

1. You might wonder why the protons, all carrying positive charges, are
compactly residing inside the nucleus. Why do they not fly away? You
will learn that there is a third kind of a fundamental force, called the
strong force which holds them together. The range of distance where
this force is effective is, however, very small ~10-14 m. This is precisely
the size of the nucleus. Also the electrons are not allowed to sit on
top of the protons, i.e. inside the nucleus, due to the laws of quantum
mechanics. This gives the atoms their structure as they exist in nature.

2. Coulomb force and gravitational force follow the same inverse-square
law. But gravitational force has only one sign (always attractive), while
Coulomb force can be of both signs (attractive and repulsive), allowing
possibility of cancellation of electric forces. This is how gravity, despite
being a much weaker force, can be a dominating and more pervasive
force in nature.

3. The constant of proportionality k in Coulomb’s law is a matter of
choice if the unit of charge is to be defined using Coulomb’s law. In SI
units, however, what is defined is the unit of current (A) via its magnetic
effect (Ampere’s law) and the unit of charge (coulomb) is simply defined
by (1C = 1 A s). In this case, the value of k is no longer arbitrary; it is
approximately 9 × 109 N m2 C–2.

4. The rather large value of k, i.e., the large size of the unit of charge
(1C) from the point of view of electric effects arises because (as
mentioned in point 3 already) the unit of charge is defined in terms of
magnetic forces (forces on  current–carrying wires) which are generally
much weaker than the electric forces. Thus while 1 ampere is a unit
of reasonable size for magnetic effects, 1 C = 1 A s, is too big a unit for
electric effects.

5. The additive property of charge is not an ‘obvious’ property. It is related
to the fact that electric charge has no direction associated with it;
charge is a scalar.

6. Charge is not only a scalar (or invariant) under rotation; it is also
invariant for frames of reference in relative motion. This is not always
true for every scalar. For example, kinetic energy is a scalar under
rotation, but is not invariant for frames of reference in relative
motion.

7. Conservation of total charge of an isolated system is a property
independent of the scalar nature of charge noted in point 6.
Conservation refers to invariance in time in a given frame of reference.
A quantity may be scalar but not conserved (like kinetic energy in an
inelastic collision). On the other hand, one can have conserved vector
quantity (e.g., angular momentum of an isolated system).

8. Quantisation of electric charge is a basic (unexplained) law of nature;
interestingly, there is no analogous law on quantisation of mass.

9. Superposition principle should not be regarded as ‘obvious’, or equated
with the law of addition of vectors. It says two things: force on one
charge due to another charge is unaffected by the presence of other
charges, and there are no additional three-body, four-body, etc., forces
which arise only when there are more than two charges.

10. The electric field due to a discrete charge configuration is not defined
at the locations of the discrete charges. For continuous volume charge
distribution, it is defined at any point in the distribution. For a surface
charge distribution, electric field is discontinuous across the surface.
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11. The electric field due to a charge configuration with total charge zero

is not zero; but for distances large compared to the size of
the configuration, its field falls off faster than 1/r 2, typical of field
due to a single charge. An electric dipole is the simplest example of
this fact.

EXERCISES

1.1 What is the force between  two small charged spheres having
charges of 2 × 10–7C and 3 × 10–7C placed 30 cm apart in air?

1.2 The electrostatic force on a small sphere of charge 0.4 μC due to
another small sphere of charge –0.8 μC in air is 0.2 N. (a) What is
the distance between the two spheres? (b) What is the force on the
second sphere due to the first?

1.3 Check that the ratio ke2/G memp is dimensionless. Look up a Table
of Physical Constants and determine the value of this ratio. What
does the ratio signify?

1.4 (a) Explain the meaning of the statement ‘electric charge of a body
is quantised’.

(b) Why can one ignore quantisation of electric charge when dealing
with macroscopic i.e., large scale charges?

1.5 When a glass rod is rubbed with a silk cloth, charges appear on
both. A similar phenomenon is observed with many other pairs of
bodies. Explain how this observation is consistent with the law of
conservation of charge.

1.6 Four point charges qA = 2 μC, qB = –5 μC, qC = 2 μC, and qD = –5 μC are
located at the corners of a square ABCD of side 10 cm. What is the
force on a charge of 1 μC placed at the centre of the square?

1.7 (a) An electrostatic field line is a continuous curve. That is, a field
line cannot have sudden breaks. Why not?

(b) Explain why two field lines never cross each other at any point?
1.8 Two point charges qA = 3 μC and qB = –3 μC are located 20 cm apart

in vacuum.
(a) What is the electric field at the midpoint O of the line AB joining

the two charges?
(b) If a negative test charge of magnitude 1.5 × 10–9 C is placed at

this point, what is the force experienced by the test charge?
1.9 A system has two charges qA = 2.5 × 10–7 C and qB  =  –2.5 × 10–7 C

located at points A: (0, 0, –15 cm) and B: (0,0, +15 cm), respectively.
What are the total charge and electric dipole moment of the system?

1.10 An electric dipole with dipole moment 4 × 10–9 C m is aligned at 30°
with the direction of a uniform electric field of magnitude 5 × 104 NC–1.
Calculate the magnitude of the torque acting on the dipole.

1.11 A polythene piece rubbed with wool is found to have a negative
charge of 3 × 10–7 C.

(a) Estimate the number of electrons transferred (from which to
which?)

(b) Is there a transfer of mass from wool to polythene?

1.12 (a) Two insulated charged copper spheres A and B have their centres
separated by a distance of 50 cm. What is the mutual force of
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electrostatic repulsion if the charge on each is 6.5 × 10–7 C? The
radii of A and B are negligible compared to the distance of
separation.

(b) What is the force of repulsion if each sphere is charged double
the above amount, and the distance between them is halved?

1.13 Suppose the spheres A and B in Exercise 1.12 have identical sizes.
A third sphere of the same size but uncharged is brought in contact
with the first, then brought in contact with the second, and finally
removed from both. What is the new force of repulsion between A
and B?

1.14 Figure 1.33 shows tracks of three charged particles in a uniform
electrostatic field. Give the signs of the three charges. Which particle
has the highest charge to mass ratio?

FIGURE 1.33

1.15 Consider a uniform electric field E = 3 × 103 î N/C. (a)  What is  the
flux of this field through a square of 10 cm on a side whose plane is
parallel to the yz plane? (b) What is the  flux through the same
square if the normal  to its plane makes a 60° angle with the x-axis?

1.16 What is the net flux of the uniform electric field of Exercise 1.15
through a cube of side 20 cm oriented so that its faces are parallel
to the coordinate planes?

1.17 Careful measurement of the electric field at the surface of a black
box indicates that the net outward flux through the surface of the
box is 8.0 × 103 Nm2/C. (a) What is the net charge inside the box?
(b) If the net outward flux through the surface of the box were zero,
could you conclude that there were no charges inside the box? Why
or Why not?

1.18 A point charge +10 μC is a distance 5 cm directly above the centre
of a square of side 10 cm, as shown in Fig. 1.34. What is the
magnitude of the electric flux through the square? (Hint: Think of
the square as one face of a cube with edge 10 cm.)

FIGURE 1.34
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1.19 A point charge of 2.0 μC is at the centre of a  cubic Gaussian

surface 9.0 cm on edge. What is the net electric flux through the
surface?

1.20 A point charge causes an electric flux of –1.0 × 103 Nm2/C to pass
through a spherical Gaussian surface of 10.0 cm radius centred on
the charge. (a)  If the radius of the Gaussian surface were doubled,
how much flux would  pass through the surface? (b) What is the
value of the point charge?

1.21 A conducting sphere of radius 10 cm has an unknown charge. If
the electric field 20 cm from the centre of the sphere is 1.5 × 103 N/C
and points radially inward, what is the net charge on the sphere?

1.22 A uniformly charged conducting sphere of 2.4 m diameter has a
surface charge density of 80.0 μC/m2. (a) Find the charge on the
sphere. (b) What is the total electric flux leaving the surface of the
sphere?

1.23 An infinite line charge produces a field of 9 × 104 N/C at a distance
of 2 cm. Calculate the linear charge density.

1.24 Two large, thin metal plates are parallel and close to each other. On
their inner faces, the plates have surface charge densities of opposite
signs and of magnitude 17.0 × 10–22 C/m2. What is E: (a) in the outer
region of the first plate, (b) in the outer region of the second plate,
and (c) between the plates?

ADDITIONAL EXERCISES
1.25 An oil drop of 12 excess electrons is held stationary under a constant

electric field of 2.55 × 104 NC–1 in Millikan’s oil drop experiment. The
density of the oil is 1.26 g cm–3. Estimate the radius of the drop.
(g = 9.81 m s–2; e = 1.60 × 10–19 C).

1.26 Which among the curves shown in Fig. 1.35 cannot possibly
represent electrostatic field lines?
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FIGURE 1.35

1.27 In a certain region of space, electric field is along the z-direction
throughout. The magnitude of electric field is, however, not constant
but increases uniformly along the positive z-direction, at the rate of
105 NC–1 per metre. What are the force and torque experienced by a
system having a total dipole moment equal to 10–7 Cm in the negative
z-direction ?

1.28 (a) A conductor A with  a cavity as shown in Fig. 1.36(a) is given a
charge Q. Show that the entire charge must appear on the  outer
surface of the conductor. (b)  Another conductor B with charge q is
inserted into the cavity keeping B insulated from A. Show that the
total charge on the outside surface of A is Q + q [Fig. 1.36(b)]. (c)  A
sensitive instrument is to be shielded from the strong electrostatic
fields in its environment. Suggest a possible way.

FIGURE 1.36

1.29 A hollow charged conductor has a tiny hole cut into its surface.

Show that the electric field in the hole is (σ/2ε0) n̂ , where n̂  is the
unit vector in the outward normal direction, and σ is the surface
charge density near the hole.

1.30 Obtain the formula for the electric field due to a long thin wire of
uniform linear charge density λ without using Gauss’s law. [Hint:
Use Coulomb’s law directly and evaluate the necessary integral.]

1.31 It is now believed that protons and neutrons (which constitute nuclei
of ordinary matter) are themselves built out of more elementary units
called quarks. A proton and a neutron consist of three quarks each.
Two types of quarks, the so called ‘up’ quark (denoted by u) of charge
+ (2/3) e, and the ‘down’ quark (denoted by d) of charge (–1/3) e,
together with electrons build up ordinary matter. (Quarks of other
types have also been found which give rise to different unusual
varieties of matter.)  Suggest a possible quark composition of a
proton and neutron.
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1.32 (a) Consider an arbitrary  electrostatic field configuration. A small

test charge is placed at a null point (i.e., where E = 0) of the
configuration. Show that the equilibrium of the test charge is
necessarily unstable.

(b) Verify this result for the simple configuration of two charges of
the same magnitude and sign placed a certain distance apart.

1.33 A particle of mass m and charge (–q) enters the region between the
two charged plates initially moving along x-axis with speed vx (like
particle 1 in Fig. 1.33). The length of plate is L and an uniform
electric field E is maintained between the plates. Show that the
vertical deflection of the particle at the far edge of the plate is
qEL2/(2m vx

2).
Compare this motion with motion of a projectile in gravitational field
discussed in Section 4.10 of Class XI Textbook of Physics.

1.34 Suppose that the particle in Exercise in 1.33 is an electron projected
with velocity vx = 2.0 × 106 m s–1. If E between the plates separated
by 0.5 cm is 9.1 × 102 N/C, where will the electron strike the upper
plate? (|e|=1.6 × 10–19 C, me = 9.1 × 10–31 kg.)


