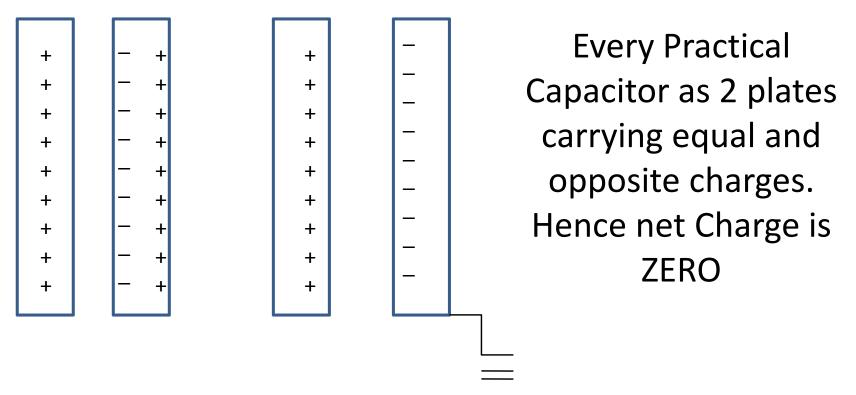
PRINCIPLE



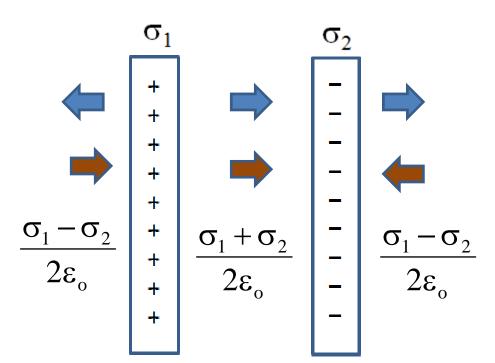
Whenever a neutral conductor is placed near a charged conductor its capacitance increase

TYPES

Based on Geometrical Shape Parallel Plate Capacitor, Cylindrical Capacitor, Spherical Capacitor etc

Based on Material between Plates Air Capacitor, Ceramic Capacitor, Mica Capacitor etc

Find the Potential due to a charge, Then Divide the Charge by potential. Whatever we get is the capacitance of capacitor.



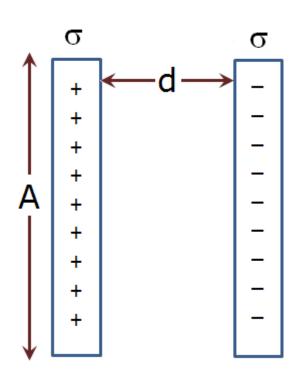
E in between 2 sheets =
$$\frac{\sigma}{\varepsilon_0}$$

E outside 2 sheets = 0

$$E = \frac{V}{d}$$

$$\sigma = \frac{Q}{A}$$

Parallel Plate Capacitor

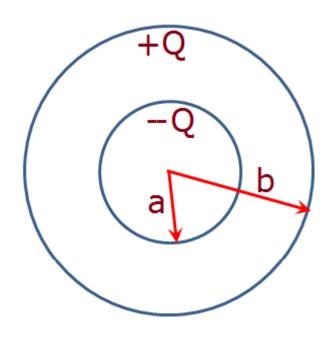


$$E = \frac{V}{d} \qquad \sigma = \frac{Q}{A}$$

$$E = \frac{V}{d} \Rightarrow V = E.d$$

$$V = \frac{Q}{A} \Rightarrow V =$$

A and d have practical limitations



$$V \text{ at } B = \frac{kQ}{b} - \frac{kQ}{b} = 0$$

$$V_{AB} = \frac{kQ}{b} - \frac{kQ}{a} = kQ\left(\frac{1}{b} - \frac{1}{a}\right) \qquad \frac{Q}{V_{AB}} = \frac{1}{k}\left(\frac{ab}{a - b}\right) = C$$

V at A due to
$$-Q = -\frac{kQ}{a}$$

V at A due to
$$+Q = \frac{kQ}{b}$$

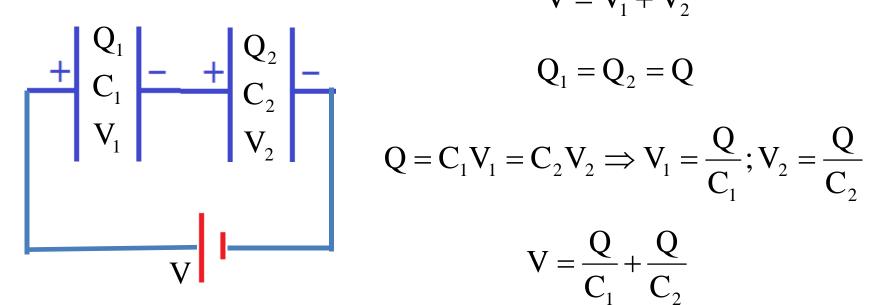
V at A =
$$\frac{kQ}{b} - \frac{kQ}{a}$$

V at B due to
$$-Q = -\frac{kQ}{b}$$

V at B due to
$$+Q = \frac{kQ}{b}$$

$$\frac{Q}{V_{AB}} = \frac{1}{k} \left(\frac{ab}{a - b} \right) = C$$

Grouping of Capacitor : SERIES



$$V = V_1 + V_2$$

$$\mathbf{Q}_1 = \mathbf{Q}_2 = \mathbf{Q}$$

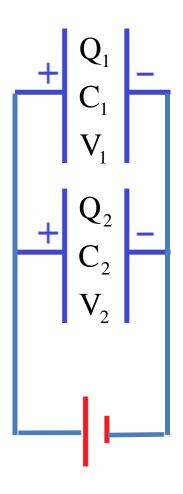
$$Q = C_1 V_1 = C_2 V_2 \Longrightarrow V_1 = \frac{Q}{C_1}; V_2 = \frac{Q}{C_2}$$

$$V = \frac{Q}{C_1} + \frac{Q}{C_2}$$

$$\frac{V}{Q} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{C_{EQV}}$$
 $\frac{1}{C_{EQV}} = \frac{1}{C_1} + \frac{1}{C_2}$

$$\frac{1}{C_{EOV}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Grouping of Capacitor: PARALLEL

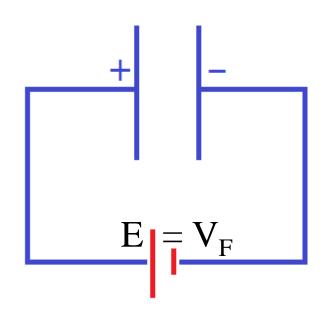


$$Q_1 = C_1 V_1;$$
 $Q_2 = C_2 V_2$ $V_1 = V_2 = V(say)$

Net charge stored = $Q = Q_1 + Q_2$

$$Q = C_1 V + C_2 V$$
$$= (C_1 + C_2)V$$

$$\frac{\mathbf{Q}}{\mathbf{V}} = (\mathbf{C}_1 + \mathbf{C}_2) = \mathbf{C}_{\mathrm{EQV}}$$



$$Q = CV$$

Initial
$$V = 0$$
; $Q = 0$

after some time
$$Q = q$$
; $V = V' \Rightarrow q = CV'$

This instant charge dq is brought

$$dW = V'dq = \frac{q}{C}.dq$$

$$\int_0^W dW = \int_0^Q \frac{q}{C} . dq = \frac{1}{C} \int_0^Q q . dq = \frac{1}{2C} q^2 \Big|_0^Q = \frac{Q^2}{2C}$$

$$W = U = {Q^2 \over 2C} = {1 \over 2}CV^2 = {1 \over 2}QV$$