Electric flux: is defined as total number of electric field lines passing from any area, denoted by mathematically it is defined as integral of **E** and $dS \implies \phi = \int E \cdot dS$ with units of Newton meter²/Coulomb **Remember area vector S** is perpendicular to the surface of area under consideration.

Gauss Law: states that surface integral of electric field produced by any source over any closed surface sing a volume V is $1/\varepsilon_0$ times total charge contained inside surface. **S** enclosing a volume V is $1/\varepsilon_0$ times total charge contained inside surface.

It is to note that electric charges outside Gaussian surface do not contribute to electric field.

Derivation of Coulomb law, E due to linear charged & E due to a charged sphere (Hollow/Conductor/uniformly Charged)

Basics: in all the derivations we get a Gaussian surface symmetrical to charge. Find out direction of **E** and S at various points on surface. Whenever **E** is perpendicular to surface **E**.dS is zero and if **E** is $\|$ to $\|$ **E.** S becomes **EdS.** After calculating flux we find the charge in given Gaussian surface. And use \int **E**.d**S** = Q/ϵ_0

In $1st$ case we take point charge Q placed at center, then taking sphere as shown in Figure 1. Considering point 'A' near the surface we see that \mathbf{E}' and 'd**S'** are in same direction thus t ussian surface (radius r) we draw as

- $=\oint E.dS = E \oint dS$ (E is constant) $\phi = \oint E \cdot dS = \oint E \cdot dS \cos \theta$
- $=$ E.4 πr^2

Now as per Gauss law it should be equal \circ $e_0 \rightarrow L - 4\pi \varepsilon_0 r^2$ 2 r Q 4 $E.4\pi r^2 = \frac{Q}{r} \Rightarrow E = \frac{1}{r}$ $\phi = E.4\pi r^2 = \frac{Q}{\epsilon_0} \Rightarrow E = \frac{1}{4\pi\epsilon}$ Now as per Gauss law it should be equal to contained in volume i.e. Q. equating both we g
 $\phi = E.4\pi r^2 = \frac{Q}{\epsilon_0} \Rightarrow E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$

If we place charge Q' at point A the force is given by **F** = Q'**E** placing the e contained in volume i.e. Q. equating both we get

QQ' 4 $F = \frac{1}{4\pi\epsilon}$

which is Coulomb's law. In integration we have taken distance from center, thus s and we have taken $\sum_{n=1}^{\infty}$ or $\sum_{n=1}^{\infty}$ of the integral with assumption that due to symmetry each point is same

In Second case for a linear conductor $(\lambda$ Coulomb/meter) charge we take Gaussian surface as a cylinder (radius r & length L) with axis collinear with the charge.

Drawing different vectors at different places for **E** and **S** we see that at the curved surface **E** and **S** are parallel to each other, while at plain surfaces they are perpendicular to each other.

Thus only **E** & **S** which are on curved surface contribute to the calculation of flux. Mathematically

$$
\phi = \oint EdS = \int_{CSA} EdS + \int_{Eads} EdS
$$

\n
$$
= \int_{CSA} EdS - \int_{CSA} EdS - \int_{Eads} EdS
$$

\n
$$
= E2\pi L
$$

\n
$$
= E2\pi L
$$

\n
$$
E2\pi L = \frac{2L}{\epsilon_0} \Rightarrow E = \frac{\lambda}{2\pi\epsilon_0}
$$

\n
$$
E2\pi L = \frac{\lambda L}{\epsilon_0} \Rightarrow E = \frac{\lambda}{2\pi\epsilon_0}
$$

\n
$$
\oint
$$

\nIn this case we try to get *E* due to hollow or charge *Q* and *Q* and *Q* is a factor (radial to charge) in both the cases charge is residing at the periphery. So we take 3 different gaussian super
\n(ii) $r = R$ sphere 'A'
\n(iii) $r > R$ sphere 'B'
\n(iii) $r > R$ sphere 'B'
\n
$$
\oint = \oint EdS = \frac{Q}{\epsilon_0}
$$
 but since c)
\n $\oint = \oint EdS = \frac{Q}{\epsilon_0} = 0$ as d $\Rightarrow \epsilon$ *Q*
\nCase (ii) $\phi = \oint EdS = \frac{Q}{\epsilon_0}$ but since c)
\n $\theta = E4\pi R^2$
\nCase (iii) $\oint = \frac{Q}{\epsilon_0} = 0$ as d $\Rightarrow \epsilon$ *Q*
\nCase (iii) $\oint = d\pi c_0$ $\frac{1}{R^2}$
\nCase (iv) $\Phi = \oint EdS = Ef dS$ also
\n
$$
\oint = \frac{1}{4\pi c_0} \frac{Q}{R^2}
$$

\nCase (iii) $\oint = \frac{1}{4\pi c_0} \frac{Q}{R^2}$
\n
$$
\oint = \frac{1}{4\pi c_0} \frac{Q}{R^2}
$$

Lastly we take derivation of uniformly charged sphere, where charge 'Q' is uniformly distributed over the full sphere.

Obviously it has to be insulator. Thus the derivation for $r \ge R$ is same as for conductor (hollow or solid sphere). Charge per unit volume(ρ) = Q $\sqrt{2\pi R^3}$ $\overline{\mathsf{R}}$ B The only change is in the E inside the sphere, as in this case some charge is there, while in previous cases there was no charge. Applying Gauss in this case $\left(\begin{array}{c} \sqrt{2} \end{array} \right)$ Which is equal to charge in Guassian sphere 3 3 2 Qr³ \sim \angle Thus $\phi = \frac{Qr}{r}$ $E.4\pi r^2 = \frac{Qr}{r^2}$ $E = \frac{1}{1}$ Qr 3 Thus $\phi = \frac{Q_1}{\epsilon_0 R^3} \Rightarrow E.4\pi r^2 = \frac{Q_1}{\epsilon_0 R^3} \Rightarrow E = \frac{1}{4\pi \epsilon_0 R^3}$ 3 3 $_0$ R³ $_{0}R^{3}$ \rightarrow $L _{4\pi \varepsilon_{0}}$ \mathbb{R}^{3} 4 R R R R 3 Tas `dS $\ddot{}$ dS 2 dS $\ddot{}$ dS Considering the case of infinitely large dimensioned charged sheet having charge per unit area as σ Coul.m². We take cylindrical Guassian surface with axis perpendicular to the plane of sheet. It is clear that at curved surface are **E** and d**S** are perpendicular to each other. Thus CSA does not contribute to flux, but only circular sheet at the extreme ends contribute to flux as **E** and d**S** are parallel in this case.

 σ $\phi = \oint E \cdot dS = E \cdot 2A =$ whet interesting to note that in present case \bf{E} is independent of distance $rac{371}{\epsilon_0} \Rightarrow E = \sum$ e from sheet. *Why*? $\ddot{}$ \bf{B} C_A \overline{C} \mathbf{A}

E due to Charged Spherical SHELL/CONDUCTING SPHERE

